

RESEARCH REPORT 987-6

TRAFFIC-LOAD FORECASTING USING WEIGH-IN-MOTION DATA

Tongbin Qu, Clyde E. Lee, and Liren Huang

CENTER FOR TRANSPORTATION RESEARCH BUREAU OF ENGINEERING RESEARCH THE UNIVERSITY OF TEXAS AT AUSTIN

MARCH 1997

χ_{i} , which is the χ_{i} , χ_{i} , χ_{i} , χ_{i} , χ_{i} , χ_{i}
en de la composition de la financia de la composition de la composition de la composition de la financia de la La composition de la

1. Report No. TX-99/987-6	2. Government Accession No.	3. Recipient's Catalog No.				
4. Title and Subtitle TRAFFIC-LOAD FORECASTI WEIGH-IN-MOTION DATA	NG USING	5. Report Date March 1997				
7. Author(s)		6. Performing Organization Code				
Tongbin Qu, Clyde E. Lee, and	Liren Huang	8. Performing Organization Report No. 987-6				
9. Performing Organization Name a	nd Address	10. Work Unit No. (TRAIS)				
Center for Transportation Resea The University of Texas at Aust 3208 Red River, Suite 200 Austin, TX 78705-2650		11. Contract or Grant No. 7-987				
12. Sponsoring Agency Name and A		13. Type of Report and Period Covered Research Report (9/95-8/96)				
Research and Technology Trans P.O. Box 5080 Austin, TX 78763-5080	sfer Section/Construction Division	14. Sponsoring Agency Code				
15. Supplementary Notes						

16. Abstract

Vehicular traffic loading is a crucial consideration for the design and maintenance of pavements. With the help of weigh-in-motion (WIM) systems, the information about date, time, speed, lane of travel, lateral lane position, axle spacing, and wheel load for each vehicle passing a WIM site can be recorded continuously on-site and transferred to a remote computer. This study focused on using the data from two WIM systems installed to support research on pavement performance.

Data analysis involved processing the data from the two WIM systems, summarizing the data into respective TxDOT vehicle classes, analyzing the error records in the WIM data, and exploring trends and patterns in the observed traffic counts. The researchers also analyzed the axle-load frequency distribution for different axle groups within all truck classes, explored the trend of axle-load distribution among years, and compared the difference in axle-load distribution for the same axle type at different locations in different vehicle classes. A time-series method was used to forecast traffic counts for each vehicle class based on the trend in the pattern of observed traffic and a growth rate for each vehicle class. Finally, cumulative traffic loading was forecasted by applying the estimates of future traffic count to the respective axle-load frequency distribution. A C-language computer program that runs on PC-compatible machines was developed to facilitate data processing for traffic-load forecasting.

17. Key Words Weigh-in-motion systems, veh axle weight frequency distribu average ESALs per vehicle, tra forecasting, traffic load foreca	tion, weighted affic count	18. Distribution Statement No restrictions. This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.				
19. Security Classif. (of report)	20. Security Classis	f. (of this page)	21. No. of pages	22. Price		
Unclassified	Unclassified		132			

Project conducted in cooperation with the Federal Highway Administration.

TRAFFIC-LOAD FORECASTING USING WEIGH-IN-MOTION DATA

by
Tongbin Qu,
Clyde E. Lee,
and
Liren Huang

Research Report Number 987-6

Research Project 7-987

A Long-Range Plan for the Rehabilitation of US 59 in the Lufkin District

conducted for the

TEXAS DEPARTMENT OF TRANSPORTATION

by the

CENTER FOR TRANSPORTATION RESEARCH Bureau of Engineering Research THE UNIVERSITY OF TEXAS AT AUSTIN

March 1997

IMPLEMENTATION RECOMMENDATION

The computer program developed for this study of vehicle sorting, axle-load frequency distribution, and future traffic load forecasting can be used on any PC computer; however, it was implemented on a Pentium computer. The program is intended to facilitate the analysis of observed traffic loading and the forecasting of future traffic loading. It is valid for WIM systems that use the same data format as the one from which the research data was obtained (PAT DAW100).

Prepared in cooperation with the Texas Department of Transportation

DISCLAIMERS

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration or the Texas Department of Transportation. This report does not constitute a standard, specification, or regulation.

There was no invention or discovery conceived or first actually reduced to practice in the course of or under this contract, including any art, method, process, machine, manufacture, design or composition of matter, or any new and useful improvement thereof, or any variety of plant, which is or may be patentable under the patent laws of the United States of America or any foreign country.

ACKNOWLEDGMENTS

This study is part of the continuing research study on the long-range pavement rehabilitation plan for the portion of US 59 within the Lufkin District. Sincere appreciation is expressed to Eric Starnater, Lufkin District Pavement Engineer, who has assisted this research study with WIM data collection and trouble shooting of the WIM systems, and to Liren Huang, research assistant at the Center for Transportation Research at The University of Texas at Austin, who gave his valuable suggestions and support on data processing and analysis in operating the WIM systems.

NOT INTENDED FOR CONSTRUCTION, BIDDING, OR PERMIT PURPOSES

Clyde E. Lee, P.E. (Texas No. 20512)

Research Supervisor

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION	1
1.1 GENERAL	1
1.2 BACKGROUND	1
1.3 OBJECTIVES	1
1.4 ORGANIZATION OF THE REPORT	2
	2
CHAPTER 2. DATA PROCESSING AND ANALYSIS OF OBSERVED TRAFFIC	3
2.1 WEIGH-IN-MOTION (WIM) SYSTEM	3
2.1.1 Components of a WIM System	3
2.1.2 Location	3
2.2 TEXAS DEPARTMENT OF TRANSPORTATION (TXDOT)	
CLASSIFICATION	4
2.3 SORTING WIM DATA BY VEHICLE TYPE	5
2.3.1 Data Format of the ASCII Data File	6
2.3.2 The Algorithm of the Program	7
2.3.3 Error File Analysis	8
2.4 ANALYSIS OF OBSERVED DATA	10
2.4.1 Traffic Composition	10
2.4.2 North and South Site Traffic Comparison	12
2.4.3 Traffic Lanewise Distribution	13
CHAPTER 3. TRAFFIC FORECASTING	15
3.1 LINEAR REGRESSION ON HISTORICAL SURVEY DATA FROM TXDOT	15
3.2 TIME SERIES METHOD FOR FORECASTING 5-AXLE TRAILER TRAFFIC.	16
3.2.1 Exploring Historical Pattern of WIM Data	17
3.2.2 Time Series Decomposition	18
3.2.3 Traffic Forecasting by a Time-Series Model	23
3.3 TRAFFIC GROWTH RATE FOR OTHER TRUCK CLASSES	25
3.4 SUMMARY	26
	20
CHAPTER 4. OBSERVED TRUCK LOADING ANALYSIS	25 20
4.1 COMPUTER PROGRAM FOR PROCESSING LOAD DATA	25 20
4.2 COMPARISON OF LOAD DISTRIBUTION AMONG YEARS	ىد دد
4.3 COMPARISON OF LOAD DISTRIBUTION BETWEEN SITES	32
4.4 COMPARISON OF LOAD DISTRIBUTION OF SAME AXLE GROUP IN	2.2
SAME OR DIFFERENT TRUCK CLASS	33
4.4.1 Difference of Load Distribution of the First and Second Tandem	20
Axle on 3S2	33
1 1 2 Difference of Load Distribution on the Eirst Landem Axie	

Between 3S2 and 3S2 Spread	34
4.4.3 Difference of Load Distribution on the Four Single Axles of the 2S1-2	
4.4.4 Steering Axle	35
CHAPTER 5. FORECASTING ESALS	37
5.1 THE AASHO ROAD TEST AND EQUIVALENT SINGLE AXLE LOAD	
5.1.1 Steering Axle and Tridem Axle Equivalency Factors	
5.1.2 Weighted Average Equivalency Factor for Each Vehicle Type	
5.2 DIFFERENCE IN ESALS BY 3S2 AND 3S2 SPREAD	40
5.3 AN EXAMPLE OF ESAL CALCULATIONS FOR FORECASTED YEAR	40
CHAPTER 6. CONCLUSION AND RECOMMENDATIONS	43
6.1 CONCLUSIONS	43
6.2 RECOMMENDATIONS	
REFERENCES	45
APPENDIX A.	
A.1 CAR PROGRAM	
A.2 ESAL PROGRAM	77
APPENDIX B: SOUTH SITE TRAFFIC COUNT FOR 1995	
APPENDIX C: TRAFFIC GROWTH RATE ANALYSIS	
APPENDIX D: INSTRUCTIONS FOR USING CAR AND ESAL PROGRAM	103

SUMMARY

Vehicular traffic loading is a crucial consideration for the design and maintenance of pavements. With the help of weigh-in-motion (WIM) systems, the information about date, time, speed, lane of travel, lateral lane position, axle spacing, and wheel load for each vehicle passing a WIM site can be recorded continuously on-site and transferred to a remote computer. This study focused on using the data from two WIM systems installed to support research on pavement performance.

Data analysis involved processing the data from the two WIM systems, summarizing the data into respective TxDOT vehicle classes, analyzing the error records in the WIM data, and exploring trends and patterns in the observed traffic counts. The researchers also analyzed the axle-load frequency distribution for different axle groups within all truck classes, explored the trend of axle-load distribution among years, and compared the difference in axle-load distribution for the same axle type at different locations in different vehicle classes. A time-series method was used to forecast traffic counts for each vehicle class based on the trend in the pattern of observed traffic and a growth rate for each vehicle class. Finally, cumulative traffic loading was forecasted by applying the estimates of future traffic count to the respective axle-load frequency distribution. A C-language computer program that runs on PC-compatible machines was developed to facilitate data processing for traffic-load forecasting.

PROTECTED UNDER INTERNATIONAL COPYRIGHT ALL RIGHTS RESERVED. NATIONAL TECHNICAL INFORMATION SERVICE U.S. DEPARTMENT OF COMMERCE

CHAPTER 1. INTRODUCTION

1.1 GENERAL

Vehicular traffic loading is a crucial consideration for the design and maintenance of pavements. Truck traffic has been constantly on the rise for the past half century. As a consequence, highway engineers continue to face the challenge of designing and maintaining pavements to accommodate increasing truck traffic loading. Perhaps the most significant problem faced by highway design engineers is the non-availability of timely, reliable traffic data, such as truck traffic percentage and axle loads. Pavement damage is a direct function of axle loads; therefore, only reliable and accurate traffic data can produce good pavement design and maintenance solutions.

With the advent of weigh-in-motion (WIM) technology, the collection of large, representative samples of traffic load data has become more efficient and effective. Besides axle load information, a WIM system can also obtain information about speed, lane of operation, date and time of vehicle passage, and the number and spacing of axles. Furthermore, the average daily traffic (ADT) for a certain period of time, or the average annual daily traffic (AADT), can be calculated directly when a WIM system continuously counts and records all vehicles that pass through a WIM site.

WIM data can also be used for forecasting future traffic loading. Two key traffic factors — the future truck volume and the corresponding axle weight frequency distributions — can be estimated after exploring the growth pattern of the observed truck volume and axle weight frequency distributions obtained from WIM data.

1.2 BACKGROUND

US 59 is a principal arterial highway that runs from Laredo through Houston and Lufkin, exits Texas at Texarkana, and extends northeast all the way to Canada. The section of this road in Texas carries a considerable amount of truck traffic. The Texas Department of Transportation (TxDOT), in cooperation with the Center for Transportation Research (CTR) of The University of Texas at Austin, initiated a research project to develop a long-range rehabilitation plan for US 59 in the Lufkin District (about 225 km centerline length). Two WIM systems, augmented with infrared detectors and temperature sensors, were installed in two pavement test sections for the purpose of continuously collecting traffic and temperature data. Both WIM systems are in the southbound traffic lanes of US 59 and are located, respectively, to the north (rigid pavement) and to the south (flexible pavement) of Corrigan, about 10 km apart.

1.3 OBJECTIVES

The overall objective of this portion of the study is to develop a procedure for using WIM system data to estimate future traffic volume and axle loads, and to calculate the

probable pavement damage resulting from such loads in terms of equivalent 18-kip equivalent single axle loads (ESALs). This objective will be achieved through the following steps:

- Analysis of observed traffic: Develop a new computer program to substitute for the previous Excel macro program. The new program will sort vehicles by TxDOT's current classification scheme (number and spacing of axles) and will be time efficient.
- Traffic forecasting: Analyze the pattern of observed traffic volumes by vehicle class and develop an annual growth rate for each vehicle class.
- Axle weight frequency distribution: Analyze the observed axle weight frequency distributions by vehicle classes and explore their individual growth trends.

Since truck traffic usually contributes a major proportion of all ESALs (Ref 18), this study emphasizes the effects of truck traffic, especially the 5-axle single trailer, which comprised a large percentage of the observed trucks.

1.4 ORGANIZATION OF THE REPORT

A brief description of the project background and the proposed objectives has been presented in Chapter 1. The computer program that was developed for sorting vehicles by the current TxDOT classification scheme and for analyzing the observed traffic patterns is introduced in Chapter 2.

Analyses of the patterns of observed vehicle traffic counts and a means for selecting an appropriate growth rate for the next 20 years are presented in Chapter 3. Comparisons of the axle weight frequency distributions of different truck classes and patterns, as well as trends of these distributions, are presented in Chapter 4.

A concept developed at the American Association of State Highway Officials (AASHO) Road Test for relating traffic loads to pavement damage, namely, the idea of the equivalent single axle load (ESAL), is applied to observed WIM data and an example of forecasted ESALs is presented in Chapter 5. Finally, conclusions drawn from this research and recommendations for further study are presented in Chapter 6.

CHAPTER 2. DATA PROCESSING AND ANALYSIS OF OBSERVED TRAFFIC

The first step in estimating future traffic loads is to process the observed weigh-in-motion (WIM) data. Efficient processing of data at the first stage is essential, as large digital data files are created by the WIM system and are stored temporarily on site. After being downloaded to a remote computer, the data in these files must be formatted suitably and used to extract information about traffic characteristics with respect to time. The product of the data processing effort made for processing data reported herein is a computer program designed to efficiently provide traffic and weight information from observed WIM data.

2.1 WEIGH-IN-MOTION (WIM) SYSTEM

A WIM system, as its name implies, weighs vehicles in motion. Historically, vehicle weight data have been collected by stopping vehicles at weigh stations and weighing each axle of the static vehicle on scales. This procedure was time consuming, expensive, and often hazardous, and only small samples could be obtained.

The WIM concept, which involves the measurement and analysis of dynamic vehicle tire forces for estimating the corresponding gross-vehicle weight, and the portion thereof carried by each wheel or axle of a moving vehicle, offers many advantages over conventional static weighing. A WIM system can weigh and dimension virtually every vehicle that passes, and the data can be accessed from remote locations. Thus, a WIM system has a relatively low operating cost per vehicle weighed. Although a WIM system might have a higher initial hardware cost, compared with scales used for static weighing, it is much more cost effective for obtaining representative samples of statistical data related to traffic loading characteristics.

2.1.1 Components of a WIM System

The WIM system used for this project comprises four basic components:

- Tire force sensors (weigh pads)
- Vehicle presence detector (inductance loop)
- Tire sensor (infrared light beam)
- Signal processor unit

For details of each component and its function, readers are encouraged to consult the System Description of Automatic Vehicle Weight and Classification System by PAT Equipment Corporation, Inc. (now PAT Traffic Control Corporation) (Ref 19). Figure 2.1 shows the layout of the WIM system.

2.1.2 Location

Two WIM systems monitored southbound US 59 traffic north and south of the US 287–US 59 intersection at Corrigan. Figure 2.2 shows the geographic location of the WIM systems.

2.2 TEXAS DEPARTMENT OF TRANSPORTATION (TXDOT) CLASSIFICATION

Various vehicle classification schemes have been used over the years. TxDOT revised and published the vehicle classification currently used by their observers and analysts in January 1996 (Ref 20). Vehicles are classified into thirteen basic types. Each type may have one or more chassis or axle-spacing configurations. The axle-spacing range for TxDOT classification is shown in Table 2.1, and typical vehicle profiles for each type are sketched in Figure 2.3.

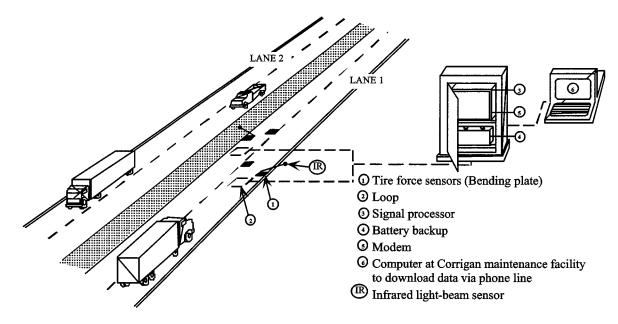


Figure 2.1 Layout of WIM system

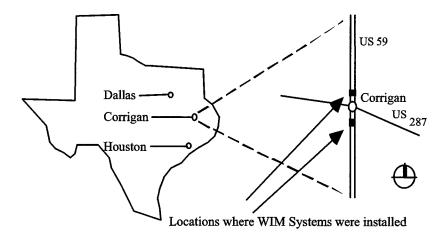


Figure 2.2 Geographic location of WIM systems

Table 2.1 TxDOT vehicle classification table (by axle spacing)

ТУРЕ	CLASS	A - B	B - C	C - D	D - E	E - F	F-G
1	MTR. CYCLE - CAR	0.1 - 10.2					
1	CAR. 1 AXLE TR.	6.1 - 10.2	6.0 - 20.1				
1	CAR. 2 AXLE TR.	6.1 - 10.2	6.0 - 20.1	0.1 - 3.3			
2	PICK-UP	10.3 - 13.0					
2	PICK-UP -1AX TR.	10.3 - 13.0	6.0 - 20.1				
2	PICK-UP -2AX TR.	10.3 - 13.1	6.0 - 20.1	0.1 - 3.3			
3	BUS - 2 AXLE	21.0 - 40.0					
3	BUS - 3 AXLE	21.0 - 40.0	3.4 - 6.0				
4	2 D	13.1 - 20.9					
4	2 D - 1 AXLE-TR.	13.1 - 20.9	6.1 - 20.1				<u> </u>
4	2 D - 2 AXLE-TR.	13.1 - 20.9	6.1 - 20.1	0.1 - 3.3			
5		6.1 - 20.9	3.4 - 4.7				
6	4 AX. SINGLE UN (4A)	13.1-20.9	3.4 - 4.7	3.4 - 4.7			
6	4 AX. SINGLE UN (RIG)	0.1 - 6.0	13.1 - 29.0	3.4 - 6.0	<u> </u>		
7	2S1	6.1 - 20.0	20.2 - 60.0				
8	2S2	6.1 - 20.0	16.5 - 40.0	3.4 - 6.0			
8	3S1	6.1 - 20.0	3.4 - 6.0	6.1 - 40.0			
9	283	6.1 - 25.0	6.1 - 40.0	3.4 - 6.0	3.4 - 6.0		
9	3S2	6.1 - 25.0	3.4 - 6.0	6.1 - 40.0	3.4 - 12.0		
10	3S3 (SINGLE TR.)	6.1 - 22.0	3.4 - 6.0	10.4 - 40.0	3.4 - 6.0	3.4 - 6.0	·
10	3S4 (SINGLE TR.)	6.1 - 22.0	3.4 - 6.0	10.4 - 40.0	3.4 - 6.0	3.4 - 6.0	3.4 - 6.0
11	2S1-2 (DBL. TR.)	6.1 - 17.0	11.1 - 23.0	6.1 - 18.0	11.1 - 23.0		
12	2S2-2 (DBL. TR.)	6.1 - 17.0	11.1 - 23.0	3.4 - 6.0	6.1 - 18.0	11.1 - 23.0	
12	3S1-2 (DBL. TR.)	6.1 - 25.0	3.4 - 6.0	6.1 - 40.0	6.1 - 18.0	11.1 - 23.0	
13	3S2-2	6.1 - 17.0	3.4 - 6.0	11.1 - 23.0	3.4 - 6.0	6.1 - 18.0	11.1 - 23.0
14	UNCLASSIFIED						

2.3 SORTING WIM DATA BY VEHICLE TYPE

Data files transferred from the PAT DAW 100 system are in binary code. These data can be converted to ASCII code by a program — dubbed WIMFTP — developed by Liren Huang at the Center for Transportation Research of The University of Texas at Austin. The computer program developed by the authors for this study operates on the data files after they are converted to ASCII code.

2.3.1 Data Format of the ASCII Data File

File name format

Each daily data file is stored in the PAT DAW 100 system under a unique file name using the "Dsssmmdd.yy" format, where:

```
D: Raw data file designator
sss: Site number, (i.e., 001 for site 1)
mm: Month
dd: Day
.: Extension separator
yy: Year
After the data file is converted to ASCII code
```

After the data file is converted to ASCII code, the file name is changed from "Dssmdd.yy" to "Vsssmmdd.yy".

ASCII data file format

An ASCII data file is composed of strings. Each vehicle generates a string of data when it passes through the WIM system. The following is an example of a string drawn from file V0020324.94 (March 24th of 1994, site 2):

```
2,3,24,0,0,26,63,28,12,1.2,1.2,1.2,1.2,0.8,0.7,9.4 where:
```

```
2: Lane used by vehicle (i.e., 1 for right lane, 2 for left lane)
```

3:Month

24: Day

0: Hour

0: Minute

26: Second

63: Speed of first axle (mi/h)

28: Time, used to calculate lateral position (ms)

12: Infrared blocked time for the first axle (ms)

1.2: Load of the left wheel of the first axle (kip)

1.2: Load of the right wheel of the first axle (kip)

12: Infrared blocked time for the second axle (ms)

0.8: Load of the left wheel of the second axle (kip)

0.3: Load of the right wheel of the second axle (kip)

9.4: Axle spacing between the first and second axle (ft)

The above data string resulted from a two-axle vehicle. Vehicles with more than two axles have four additional numbers (separated by commas) in the string for each additional axle. The order of the four succeeding numbers is in the sequence: infrared blocked time for the axle, left wheel load for the axle, right wheel load for the axle, axle spacing between the previous axle and the current axle. Hence, the string length of a two-axle vehicle contains 15 data points; the string length of a three-axle vehicle contains 19 data points, and so on.

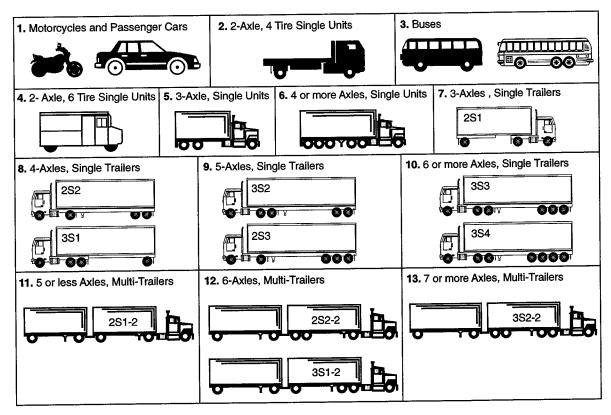


Figure 2.3 Typical vehicle profiles for TxDOT vehicle type

2.3.2 The Algorithm of the Program

The computer program that was developed for sorting data into TxDOT vehicle classes is written in C language. The basic logic of the program is to determine the number of axles on a vehicle by calculating the length of the data string and then categorizing the vehicle as one of thirteen vehicle types (or unclassified) according to TxDOT's axle-spacing criteria (see Table 2.1).

Some adjustments were made to TxDOT's range of axle spacing, since a number of vehicles contained in the data file had an axle spacing pattern that was only slightly different from the standard axle spacings in the table. The first adjustment made was to expand the last axle spacing of vehicles in Type 12 (2S2-2 & 3S1-2) from 11.1–23.0 ft to 11.1–25.0 ft.* The second adjustment was to reduce the lower limit of the tandem axle spacing of the vehicles in Type 9 (3S2 & 2S3) from 3.4 ft to 2.5 ft. It was often observed in the error records that the last axle spacing recorded for a Type 12 truck was slightly over 23.0 ft and that the recorded tandem-axle spacing of a few 5-axle single trailer trucks was somewhat less

^{*} Because TxDOT's axle-spacing criteria are given in Imperial units, we use similar units, rather than SI units, in this report.

than 3.4 ft. After these two adjustments were made, total daily error records were reduced to about 0.5 percent, as error records were usually fewer than 50 vehicles per day.

The infrared sensors were inoperative for various reasons and at various times during the 3-year period. When an infrared sensor was not functioning, the infrared blocked time in the ASCII data file was unreasonably large and started with a "%" sign. In order to use the satisfactory data relating to axle load and spacing, the program ignores any infrared blocked time value that starts with the "%" sign.

Powered by a Pentium PC computer, the program can process 30 days of WIM data (about 7,000 vehicles per day) in less than 10 minutes. The flow chart of the program is shown in Figure 2.4, while the code for the program is provided in Appendix A. Appendix B includes tables showing the observed vehicles sorted into thirteen types and error records (which are stored as Type 14) for each month of 1995.

2.3.3 Error File Analysis

After sorting the data by vehicle class, the record for any vehicle whose axle spacing does not match that of any listed vehicle class is designated an error record. The program can count the number of error records and display them upon request. There are several causes for error records. The most common are:

Off scale — When a vehicle changes lanes or one side of a vehicle is driving on the shoulder at the WIM site, the wheels on one end of the axle do not contact either weigh pad in the lane. The wheels are, therefore, off scale and a zero wheel weight is registered by the WIM system. Once the weight of one side of an axle is missing, a large and improbable axle spacing following the zero weight is recorded by the system.

Several vehicles in one record — Analysis of some of the error records indicates that some of the unusually long records are actually a combination of several vehicles, e.g., a 5-axle single trailer combined with a passenger car, or several passenger cars combined in the same record. This type of error might have resulted from using an inappropriate value for the extension time of the inductance loop on the DAW 100. A long loop extension time can cause the DAW 100 to combine successive vehicles into a single vehicle record.

Unreasonable axle spacing — Some records have unreasonable axle spacing, but they are not associated with off-scale conditions. The cause for such records has not been determined.

Error in axle spacing compared with TxDOT classification — Even though some axle spacing ranges in the current TxDOT classification scheme have been increased to accommodate some observed non-standard vehicles in the computer program, there are still a few data records that show vehicles of a slightly different axle arrangement. Since these error records comprise a low percentage of all error records (about 5 percent), they are eliminated from further analysis.

Ghost record — Ghost records refer to "the occurrence of records that were generated without the presence of any vehicles" (Ref 18). This kind of error record appeared frequently in the data files during 1993. However, the WIM system manufacturer adjusted the system software and such records do not appear in the more recent data.

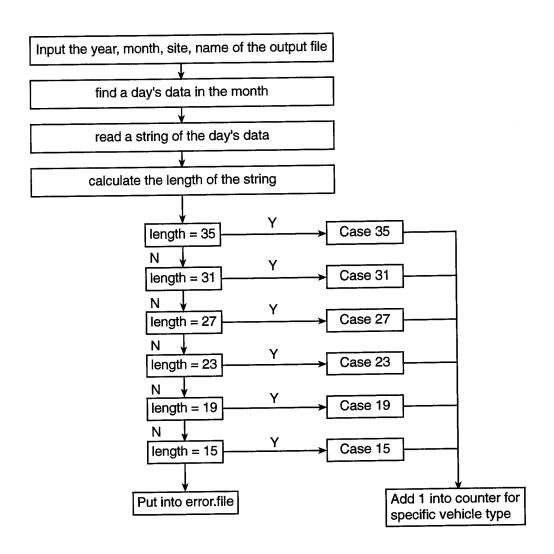


Figure 2.4 Vehicle sorting program flow chart

Combined error — Sometimes the above-mentioned errors occurred together in one error record. For example, one common combined error was the occurrence of two vehicles in one record, with one or both of them being off scale. Typical examples of error records are:

Off scale

A 5-axle single trailer (line 7428 of v0010809.95) with the right wheel of its last axle off scale:

2,8,8,23,1,3,69,42,18,3.3,4.4,29,3.0,0.8,<u>18.0</u>,22,3.5,0.9,<u>4.6</u>,4,3.0,1.1,<u>34.6</u>, 25,2.6,0.0,<u>41.8</u>

A 2-axle passenger car (line 3156 of v0020909.95) with the right wheel of its second axle off scale:

1,9,8,12,32,46,56,0,0,1.0,0.7,0,0.8,0.0,72.8

Several vehicles in one record

A passenger car with axle spacing 4.5 ft followed by a 5-axle single trailer with axle spacing 10.7 - 4.5 - 37.4 - 4.3 ft (line 242 of v0021217.93): 2,12,16,3,18,27,68,17,21,2.9,3.0,19,1.5,2.1,4.5,15,4.1,2.2,507.6,15,2.7,4.0,10.7,15,2.4, 4.1,4.5,18,3.3,2.7,37.4,18,3.5,2.0,4.3

· Unreasonable axle spacing

The second axle spacing (56.6 ft) appears unreasonable for any 6-axle truck (line 1214 of v0010809.95):

1,8,8,7,40,57,69,20,18,2.9,4.2,23,6.2,6.5,<u>12.3</u>,15,2.0,1.5,<u>56.6</u>,13,2.4,1.6, <u>3.3</u>,14,2.4,1.7,<u>2.9</u>,13,2.7,1.8,<u>2.9</u>

• Error in axle spacing compared with the TxDOT classification

Both the first and the third axle spacing of a 3S1 single trailer with axle spacing 23.0 - 4.8 - 40.5 ft are slightly over the standard range with the first axle spacing 6.1 - 20.0 ft, the second one 3.4 - 6.0 ft, and the third one 6.1 - 40.0 ft (line 4783 of v0010324.94)

1,3,23,16,11,54,83,22,11,4.5,5.0,14,3.4,4.4,<u>23.0</u>,13,3.5,4.6,<u>4.8</u>,13,2.4,2.4, <u>40.5</u>

Combined error

A 5-axle single trailer with axle spacing 13.7 - 4.2 - 30.9 - 4.1 ft connected with a 4-axle truck with the second truck off scale (line 1381 of v0010809.95) 1,8,8,8,16,16,59,19,22,4.6,6.5,22,3.0,3.5,13.7,24,2.5,3.4,4.2,38,2.1,2.4, 30.9,31,1.1,2.6,4.1,21,6.4,0.9,98.0,34,3.6,0.7,9.9,26,3.2,0.0,492.9,21,1.6,0.0, 32.8

Error files for four days were chosen randomly from different years and sites to analyze the composition of these errors. Table 2.2 details these four files.

2.4 ANALYSIS OF OBSERVED TRAFFIC

Data from 1995 were chosen to represent the present traffic situation at the WIM sites. Owing to the inconsistent data recorded in July and August of 1995, the error records of these two months were about 10 times higher than those of any other time. Therefore, the data from July and August are not used in the analysis.

2.4.1 Traffic Composition

Table 2.3 summarizes all thirteen types of vehicles and error files recorded for each month of 1995. Of all vehicles, motorcycles, 2-axle passenger cars, pickup trucks and busses

(Type 1, Type 2 and Type 3) accounted for 73 percent, and trucks accounted for the remaining 27 percent. Of the trucks, 59 percent were 5-axle single trailers (Type 9), 26 percent were 2-axle 6-tire single unit (with or without 1 or 2 axle trailer), 5 percent were 4-axle semi-trailer (Type 8), and the rest of the trucks accounted for 10 percent. Figure 2.5 and Figure 2.6 show traffic composition and truck composition, respectively.

Table 2.2 Error file analysis

Vehicle/day	V0021217.93	V0010324.94	V0010809.95	V0020909.95
Total vehicles	7481	6403	7593	8047
Error records	83	11	53	39
Percentage of total vehicles	1%	0.1%	0.7%	0.5%
Items of error records:				
Off scale	21 (25%)	-	17 (32%)	8 (20%)
(Percentage of error records)	, ,			
Several vehicles in one record	5 (7%)	1 (10%)	16 (30%)	12 (31%)
Unreasonable axle spacing	7 (10%)	7 (63%)	17 (32%)	12 (31%)
Error in axle spacing	4 (7%)	3 (27%)	3 (6%)	7 (18%)
Ghost record	46 (50%)	-	-	-

Table 2.3 Summary of south site vehicle count by class (1995)

	Туре	Туре	Туре	Туре	Туре	Туре	Туре	Туре	Туре	Type	Туре	Туре	Туре	Туре	
Month	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total
Jan.	86084	56248	788	14621	1544	20	907	2641	33996	423	1584	260	19	723	199858
Feb.	80613	52739	869	14943	1768	12	926	2611	32710	415	1606	267	12	765	190256
Mar.	99229	61765	1024	15672	1722	16	1249	2946	37006	558	1866	309	13	863	224238
Apr.	72838	44937	766	12378	1195	18	848	2013	24365	337	1268	181	9	658	161811
May	64806	38587	603	9798	1384	15	718	1864	21119	319	999	129	13	539	140893
Jun.	26874	16438	219	4499	770	4	324	847	11451	157	416	62	7	267	62335
Sep.	101340	53558	897	15497	2747	13	995	3073	34568	574	1673	297	18	971	216221
Oct.	110043	45855	791	13812	2388	13	934	3025	33937	497	1646	305	21	725	213992
Nov.	106337	42297	707	12473	1806	6	686	2441	27583	345	1227	265	8	609	196790
Dec.	109581	41226	641	12041	1635	7	594	2468	26261	413	1283	242	13	531	196936
Sum	857745	453650	7305	125734	16959	124	8181	23929	282996	4038	13568	2317	133	6651	2E+06
%	48%	25%	0%	7%	1%	0%	0%	1%	16%	0%	1%	0%	0%	0%	100%
Truck Percenta	age			125734 26.3%	16959 3.5%	124 0.0%	8181 1.7%	23929 5.0%	282996 59.2%	4038 0.8%	13568 2.8%	2317 0.5%	133 0.0%		477979

Note: Data deficient in some months

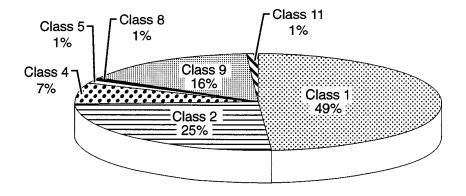


Figure 2.5 Traffic composition (1995)

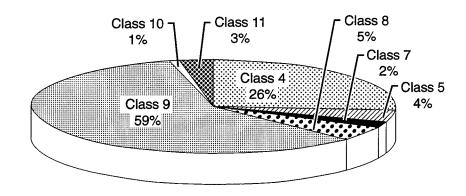


Figure 2.6 Truck composition (Classes 6, 12, and 13=0%) (1995)

2.4.2 North and South Site Traffic Comparison

As stated in Section 2.1, two WIM systems are installed north and south of Corrigan on US 59. US 287 intersects US 59 at Corrigan. Since both WIM systems are installed on the southbound lanes of US 59, vehicles coming from the north and traveling through Corrigan, along with southbound vehicles turning to and from US 287, can be observed. Figure 2.7 compares traffic at the two sites recorded from September 1 to October 30, 1995. There is a consistent pattern for north and south site traffic, as shown in the figure. During weekdays, the traffic count at the north site is always slightly higher than that at the south site. The traffic count is almost identical on the weekend (Saturday and Sunday). Thus, most of the traffic traveled through Corrigan, with a very small percentage of traffic using US 287 on weekdays.

2.4.3 Traffic Lanewise Distribution

Traffic lanewise distribution is also an important factor in pavement design. Unequal distribution of traffic between lanes significantly affects pavement design and performance. Table 2.4 summarizes the lanewise distribution of vehicle classes. As shown in Figure 2.8, Lane 1 and Lane 2 are the right-hand lane and the left-hand lane, respectively. From Table 2.4 and Figure 2.8, it can be observed that passenger cars (Type 1), pickups (Type 2), and small trucks (Type 4) used the left-hand lane more often than heavy trucks and busses (Type 3). In general, 72 percent of the vehicles traveled in the right-hand lane and 28 percent in the left-hand lane. Moreover, 80 percent of the trucks traveled in the right-hand lane.

Traffic Comparison for North & South Site (Sep. & Oct., 1995)

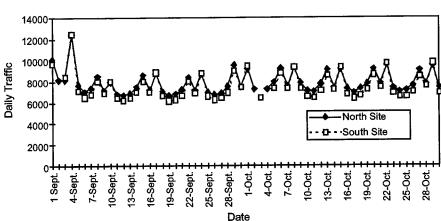


Figure 2.7 Traffic comparison for north and south WIM site

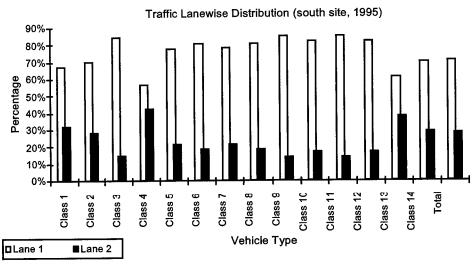


Figure 2.8 Lanewise traffic distribution

Table 2.4 Traffic lanewise distribution of south site (Jan., Feb., Mar. of 1995)

Month	Site	Туре	Туре	Туре	Туре	Туре	Туре	Туре	Туре	Туре	Туре	Туре	Туре	Туре	Туре	Total
	(Lane)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
Jan.	1	59326	40314	675	8573	1223	16	733	2239	29541	356	1375	228	14	542	1E+05
	2	26758	15934	113	6048	321	4	174	402	4455	67	209	32	5	181	54703
Feb.	1	55513	37786	733	8297	1413	9	717	2123	28307	334	1367	210	7	521	1E+05
	2	25100	14953	136	6646	355	3	209	488	4403	81	239	57	5	244	52919
Mar.	1	65449	43139	864	9094	1291	14	969	2298	31220	462	1596	254	6	604	2E+05
	2	33780	18626	160	6578	431	2	280	648	5786	96	270	55	7	259	66978
sum	1	2E+05	1E+05	2272	25964	3927	39	2419	6660	89068	1152	4338	692	27	1667	4E+05
	2	85638	49513	409	19272	1107	9	663	1538	14644	244	718	144	17	684	2E+05
Total		3E+05	2E+05	2681	45236	5034	48	3082	8198	1E+05	1396	5056	836	44	2351	6E+05
%	1	68%	71%	85%	57%	78%	81%	78%	81%	86%	83%	86%	83%	61%	71%	72%
	2	32%	29%	15%	43%	22%	19%	22%	19%	14%	17%	14%	17%	39%	29%	28%

CHAPTER 3. TRAFFIC FORECASTING

Traffic data are one of the key requirements for pavement design. Using such data, pavement engineers forecast future traffic loads and then design a given pavement structure to withstand these loads (and to prevent premature failures). In this study, we analyzed a separate growth rate for forecasting the number of trucks in each of several classes. Emphasis is placed on 5-axle single trailer trucks. A linear regression traffic forecasting method and a time-series method are used to analyze historical traffic count data obtained from TxDOT survey records and data from two research WIM systems, respectively.

3.1 LINEAR REGRESSION ON HISTORICAL SURVEY DATA FROM TXDOT

TxDOT has two manual-observation traffic stations: Station 1285 north and 1285 south, near Corrigan. At these stations, 24-hour non-direction classification manual counts are adjusted to represent average annual daily counts. These data are available from 1986 to 1994, with some data missing for 1987 and 1989. Scatter diagrams were plotted for the 24-hour non-direction classification counts of all truck classes; it was noted that only 5-axle single trailers showed a strong increasing linear trend, as seen in Figure 3.1.

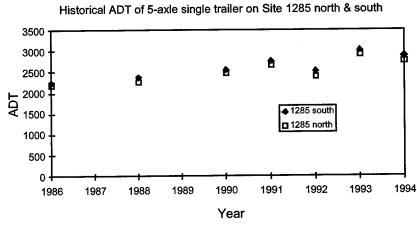


Figure 3.1 Twenty-four-hour non-direction count of 5-axle single trailer (1986–1994)

The following linear regression form was used in this study to evaluate traffic growth rates:

$$Y = a + bX$$

where

a = the Y intercept (constant),

b = the slope, or the rate of change of Y,

Y = dependent variable (24-hour count by class), and

X = independent variable (year).

The results of regression analysis are:

Station 1285 north:

$$Y = -158468 + 81 * X$$

Station 1285 south:

$$Y = -173902 + 89 * X$$

Both stations (1285 north and south) showed good fit with the data. R^2 , the coefficient of determination, is a summary measure that tells how well the sample regression line fits the data (Ref 10). The value of R^2 lies between 0 and 1, with $R^2 = 1$ representing a perfect fit. In this study, the R^2 value was above 0.8 for both stations, which means that more than 80 percent of the total 24-hour non-direction count variation of 5-axle single trailers can be explained by the regression model.

According to the regressed linear equation, the average annual traffic growth rate for 5-axle single trailers can be obtained by $(Y_{1994}-Y_{1986})/(8*Y_{1986})$. The results were about 4 percent for both station 1285 north and south.

3.2 TIME SERIES METHOD FOR FORECASTING 5-AXLE SINGLE TRAILER TRAFFIC

A time series is "a chronological sequence of observations on a particular variable" (Ref 5). In this study, average daily truck count by class is a time series. The time-series method is used in an attempt to discover a historical pattern that can be exploited in the preparation of a forecast. A time series comprises the following components:

- 1. Trend
- 2. Cycle
- 3. Seasonal variations
- 4. Irregular fluctuations

Trend refers to the upward or downward movement that a time series has over a period of time. Thus, trend reflects the long-term growth or decline in the time series.

Cycle refers to recurring up and down movements around trend levels. These fluctuations measured from peak to peak can have a duration of anywhere from 2 to 10 years, or even longer.

Seasonal variations are periodic patterns in a time series that complete themselves within a calendar year and are repeated on a yearly basis. Seasonal variations are usually caused by weather or other local factors.

Irregular fluctuations are erratic movements in a time series that follow no recognizable or regular pattern.

3.2.1 Exploring Historical Pattern of WIM Data

Daily counts of Type 9 (5-axle single trailer) and Type 4 (2-axle/ 6 tire single unit) trucks from January 1 to April 22, 1995, were plotted to show a pattern (see Figure 3.2). The 5-axle single trailer (Type 9) trucks showed a consistent weekly pattern. The lowest Type 9 counts were observed on Saturdays and Sundays. On weekdays, these counts were always lowest on Fridays and highest on Thursdays.

It was, however, not considered necessary to use daily traffic as a time series to forecast traffic for a 20-year period. To do so would necessitate calculating 365 seasonal factors for each day in a year, providing short-term fluctuations that are of no interest. Nevertheless, the consistent weekly pattern was deemed useful. Equipment malfunctions resulted in short periods of time during which data were not recorded. The result shown in Section 2.4.2 was used to supply the missing data, since the traffic counts between the two WIM sites were almost identical. If the data from both sites were missing, the consistent weekly pattern was used to estimate the missing data values by using the data set of the closest adjacent week. After the data gaps were filled, the monthly data of three years (1993–1995) were plotted to explore the monthly pattern, as shown in Figure 3.3. By inspection, a linear, increasing trend can be observed in the data shown in Figure 3.3, and an increasing seasonal variation can be seen in Figure 3.4.

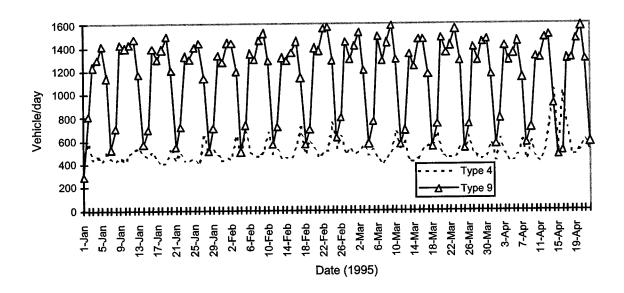


Figure 3.2 Daily vehicle count

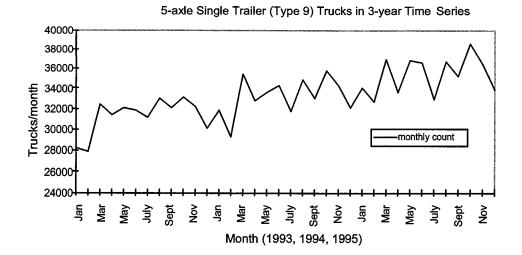


Figure 3.3 Monthly count of 5-axle single trailer trucks, 1993–1995

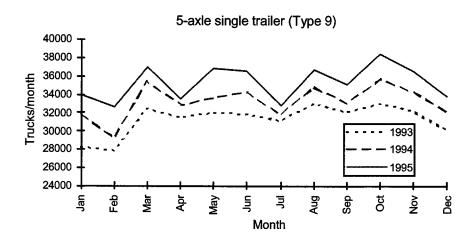


Figure 3.4 Monthly count of 5-axle single trailer trucks over 3 years (1993–1995)

3.2.2 Time Series Decomposition

Among the time-series models, one model that isolates the trend effects and seasonal effects is the multiplicative decomposition model. This model is an intuitive approach of the time series that displays increasing or decreasing seasonal variation. In this study, it can be observed in Figure 3.3 and Figure 3.4 that the data show an increasing annual truck count

during the three-year period that was studied. The multiplicative decomposition model can be expressed as follows:

$$Y_{t} = TR_{t} * SN_{t} * CL_{t} * IR_{t}$$

where

 Y_t = the observed value of the time series in time period t,

 TR_t = the trend component (or factor) in time period t,

 SN_t = the seasonal component (or factor) in time period t,

 CL_t = the cyclical component (or factor) in time period t, and

 IR_t = the irregular component (or factor) in time period t.

The first step of this time-series analysis is to calculate the seasonal factor (SN_t) . Moving averages and centered moving averages (CMA) are used to attenuate short-term variations and irregular data fluctuations. The first moving average value is the monthly average of the first 12 months' count of 5-axle single trailer trucks. The second moving average value is obtained by dropping the first-month count (Y_1) from the average and including the thirteenth-month count (Y_{13}) . Successive moving averages are computed similarly until the last-month count Y_{36} is included in the last moving average (see Table 3.1 for the worksheet). The first moving average value corresponds to a time that is midway between periods 6 and 7; the second value corresponds to a time that is midway between periods 7 and 8; and so forth. In order to obtain averages corresponding to time periods in the original monthly truck count time series, the CMA needs to be calculated. The CMA is a two-period moving average of the previously-computed twelve-period moving averages. Thus the first CMA is the average of the first and the second moving average values. The second CMA is the average of the second and the third values. Successive CMAs are calculated in a similar fashion.

The CMA in time period t, CMA_t , is considered equal to the estimate of $TR_t * CL_t$, because the averaging procedure is assumed to have removed seasonal variations (SN_t) and irregular fluctuations (IR_t), though the trend effects and cyclical effects still remain. Since the model

$$Y_t = TR_t * SN_t * CL_t * IR_t$$

implies that

$$SN_t * IR_t = \frac{Y_t}{TR_t * CL_t} = \frac{Y_t}{CMA_t}$$

The estimate SN_t can be found by the normalization process:

$$SN_t = N_f * \overline{SN_t}$$

 $\overline{SN_t}$ can be obtained by grouping the values of SN_t * IR_t by months and calculating an average for each month. N_f is the normalization factor and was calculated by:

$$L / \sum_{t=1}^{L} \overline{SN_t} = 12 / 12.019 = 0.9984$$

Table 3.1 Analysis of the monthly count of 5-axle single trailer trucks by the time-series method

		12 period		SN _t * IR _t				
t	\mathbf{Y}_{t}	moving	$CMA_t = TR_t * CL_t$	$= Y_t/(TR_t *CL_t)$	SN_t	$D_t = Y_t / SN_t$	$TR_t = 30161.05 + 171.742t$	TR, * SN,
		average						
1	28270				0.983	28769.667	30332.792	29805.977
2	27861				0.922	30224.93	30504.534	28118.736
3	32450				1.056	30732.077	30676.276	32391.08
4	31437				0.979	32095.153	30848.018	30215.439
5	32051				1.032	31042.719	31019.76	32027.296
6	31812	31287.833			1.034	30778.64	31191.502	32238.723
7	31147	31582.000	31434.917	0.991	0.971	32093.01	31363.244	30438.745
8	33026	31698.500	31640.250	1.044	1.039	31774.128	31534.986	32777.436
9	32078	31948.250	31823.375	1.008	0.991	32372.434	31706.728	31418.349
10	33080	32062.833	32005.542	1.034	1.043	31716.546	31878.47	33248.884
11	32165	32196.333	32129.583	1.001	1.003	32078.792	32050.212	32136.344
12	30077	32400.583	32298.458	0.931	0.932	32283.88	32221.954	30019.308
13	31800	32453.833	32427.208	0.981	0.983	32362.059	32393.696	31831.088
14	29259	32607.083	32530.458	0.899	0.922	31741.547	32565.438	30018.454
15	35447	32684.667	32645.875	1.081	1.056	33570.414	32737.18	34567.18
16	32812	32909.000	32796.833	1.000	0.979	33498.94	32908.922	32234.08
17	33653	33087.000	32998.000	1.020	1.032	32594.322	33080.664	34155.139
18	34263	33251.333	33169.167	1.033	1.034	33150.024	33252.406	34368.82
19	31786	33434.333	33342.833	0.953	0.971	32751.418	33424.148	32438.9
20	34865	33721.917	33578.125	1.038	1.039	33543.42	33595.89	34919.53
21	33009	33851.833	33786.875	0.977	0.991	33311.979	33767.632	33460.50
22	35772	33914.750	33883.292	1.056	1.043	34297.591	33939.374	35398.384
23	34301	34178.000	34046.375	1.007	1.003	34209.067	34111.116	34202.786
24	32049	34373.000	34275.500	0.935	0.932	34400.574	34282.858	31939.33
25	33996	34462.333	34417.667	0.988	0.983	34596.873	34454.6	33856.198
26	32710	34612.333	34537.333	0.947	0.922	35485.355	34626.342	31918.172
27	37006	34791.417	34701.875	1.066	1.056	35046.879	34798.084	36743.29
28	33567	35019.333	34905.375	0.962	0.979	34269.746	34969.826	34252.72
29	36812	35204.917	35112.125	1.048	1.032	35653.944	35141.568	36282.982
30	36603	35356.750	35280.833	1.037	1.034	35414.013	35313.31	36498.91
31	32858				0.971	33855.977	35485.052	34439.054
32	36665				1.039	35275.19	35656.794	37061.639
33	35158				0.991	35480.704	35828.536	35502.668
34	38507				1.043	36919.863	36000.278	37547.884
35	36528				1.003	36430.098	36172.02	36269.228
36	33871				0.932	36356.262	36343.762	33859.355

These calculations are summarized in Table 3.2.

		SN _t *IR _t =	$Y_t/(TR_t*CL_t)$		
	•	Year 1	Year 2	SN,	$SN_t=0.998(\overline{SN_t})$
1	Jan.	0.981	0.988	0.984	0.983
2	Feb	0.899	0.947	0.923	0.922
3	Mar	1.081	1.066	1.074	1.072
4	Apr	1.000	0.962	0.981	0.979
5	May	1.020	1.048	1.034	1.032
6	Jun	1.033	1.037	1.035	1.034
7	Jul	0.991	0.953	0.972	0.971
8	Aug	1.044	1.038	1.041	1.039
9	Sep	1.008	0.977	0.992	0.991
10	Oct	1.034	1.056	1.045	1.043
11	Nov	1.001	1.007	1.004	1.003
12	Dec	0.931	0.935	0.933	0.932

Table 3.2 Estimates of the seasonal factor for 5-axle trailer trucks

The deseasonalized observation in time period t is defined as:

$$d_{t} = \frac{Y_{t}}{SN_{t}}$$

The deseasonalized observations were calculated and are plotted in Figure 3.5.

Since the deseasonalized observations plotted in Figure 3.5 have a general straight-line appearance, it seems reasonable to assume that

$$TR_t = b_0 + b_1 t$$

TR_t was obtained by computing

$$b_1 = \frac{36\sum_{t=1}^{36} t d_t - \left(\sum_{t=1}^{36} t\right) \left(\sum_{t=1}^{36} d_t\right)}{36\sum_{t=1}^{36} t^2 - \left(\sum_{t=1}^{36} t\right)^2} = 172$$

and

$$b_0 = \frac{\sum_{t=1}^{36} d_t}{36} - b_1 \left(\frac{\sum_{t=1}^{36} t}{36} \right) = 30161$$

which gave

$$TR_t = b_0 + b_1 t = 30161 + 172 t$$

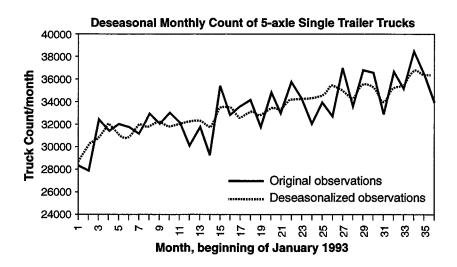


Figure 3.5 Deseasonalized monthly count of 5-axle single trailer trucks

After SN_t and TR_t were calculated, the next step was to estimate CL_t . Since the model implies that

$$CL_t * IR_t = \frac{Y_t}{TR_t * SN_t}$$

and CL_t can be estimated by averaging the irregular influence.

$$CL_{t} = \frac{CL_{t-1}IR_{t-1} + CL_{t}IR_{t} + CL_{t+1}IR_{t+1}}{3}$$

That is, CL_t is a three-period moving average of the CL_t*IR_t values. Finally, IR_t can be calculated by the equation

$$IR_{t} = \frac{CL_{t} * IR_{t}}{CL_{t}}$$

The calculated values of CL_t and IR_t are summarized in Table 3.3. Since data for only three years were available, and since most of the values of CL_t were near 1, it can be concluded that no well-defined cycle existed in the monthly data. Furthermore, the values of IR_t were examined, and there was also no pattern detected in the irregular factors.

3.2.3 Traffic Forecasting by a Time-Series Model

The model obtained using the multiplicative decomposition method can be used not only for describing the time series, but also for forecasting future time-series values.

Since there is no pattern in the irregular component in the model, it is reasonable to assume this component is equal to 1. Moreover, a well-defined cycle does not exist or cannot be predicted; therefore, the model for this data set can be written as

$$\hat{Y}_t = TR_t * SN_t = (30161 + 172 t) * SN_t (Truck count/month)$$

The forecasted count of 5-axle single trailer trucks in the first five months of 1996 was calculated by this forecasting model (see Table 3.4). The $100(1-\alpha)\%$ confidence interval for \hat{Y} , is

$$[\hat{Y}_t \pm t_{\alpha/2}^{(n-1)} \sqrt[s]{1 + (1/n)}]$$

where

$$s = \sqrt{\frac{\sum_{t=1}^{n} \left(Y_{t} - \hat{Y}_{t}\right)^{2}}{n-1}}$$

and $t_{(\alpha/2)}^{(n-1)}$ is the point on the scale of the t-distribution having (n-1) degrees of freedom so that the area under the curve of this t-distribution to the right of $t_{(\alpha/2)}^{(n-1)}$ is $\alpha/2$. If a 95 percent confidence interval, $\alpha = 0.05$, is needed, then $t_{(\alpha/2)}^{(n-1)} = t_{(0.05/2)}^{(36-1)} = t_{(0.025)}^{35} \approx 2$. The value of s (standard deviation) for the 1993, 1994, 1995 data (n=36) is equal to 612. Therefore, a 95 percent confidence interval for the 5-axle single trailer truck count (\hat{Y}) at this site in a future time period is

$$\big[\hat{Y}_t \pm t_{\alpha/2}^{(n-1)} \sqrt[s]{1 + (1/n)} \big] = \big[\hat{Y}_t \pm 2 \big(612 \big) \sqrt{1 + (1/36)} \big] = \big[\hat{Y}_t \pm 124 \, I \big]$$

t	Yt	TR _t * SN _t	$CL_t*IR_t=Y_t/(TR_t*SN_t)$	CLt	IRt=(CLt*IRt)/CLt
1	28270	29805.977	0.9485		
2	27861	28118.736	0.9908	0.9804	1.0107
3 4	32450	32391.08	1.0018	1.0110	0.9909
4	31437	30215.439	1.0404	1.0143	1.0257
5 6	32051	32027.296	1.0007	1.0093	0.9915
6	31812	32238.723	0.9868	1.0036	0.9832
7	31147	30438.745	1.0233	1.0059	1.0173
8	33026	32777.436	1.0076	1.0173	0.9905
9	32078	31418.349	1.0210	1.0078	1.0131
10	33080	33248.884	0.9949	1.0056	0.9894
11	32165	32136.344	1.0009	0.9992	1.0016
12	30077	30019.308	1.0019	1.0006	1.0013
13	31800	31831.088	0.9990	0.9919	1.0072
14	29259	30018.454	0.9747	0.9997	0.9750
15	35447	34567.188	1.0255	1.0060	1.0193
16	32812	32234.081	1.0179	1.0096	1.0083
17	33653	34155.139	0.9853	1.0000	0.9852
18	34263	34368.82	0.9969	0.9874	1.0097
19	31786	32438.9	0.9799	0.9917	0.9880
20	34865	34919.538	0.9984	0.9883	1.0103
21	33009	33460.508	0.9865	0.9985	0.9880
22	35772	35398.384	1.0106	1.0000	1.0106
23	34301	34202.786	1.0029	1.0056	0.9973
24	32049	31939.331	1.0034	1.0035	1.0000
25	33996	33856.198	1.0041	1.0108	0.9934
26	32710	31918.172	1.0248	1.0120	1.0126
27	37006	36743.297	1.0071	1.0040	1.0032
28	33567	34252.724	0.9800	1.0006	0.9794
29	36812	36282.982	1.0146	0.9991	1.0155
30	36603	36498.916	1.0029	0.9905	1.0125
31	32858	34439.054	0.9541	0.9821	0.9715
32	36665	37061.639	0.9893	0.9779	1.0117
33	35158	35502.668	0.9903	1.0017	0.9886
34	38507	37547.884	1.0255	1.0077	1.0178
35	36528	36269.228	1.0071	1.0110	0.9962
36	33871	33859.355	1.0003		

Table 3.3 Estimates of the cycle and irregular factor for 5-axle single trailer trucks

The actual traffic data for the first five months of 1996 were used to test this model. The 95 percent confidence intervals (calculated by the above method) for the 5-axle single trailer truck count for the first five months of 1996 are presented in Table 3.4. Note that four of the five-month confidence intervals contain the actual traffic values of the first five months of 1996 and that the fifth monthly count is only very slightly outside. The observed and estimated counts for 1993, 1994, 1995, and the first five months of 1996 are plotted in Figure 3.6.

According to the trend component in this time series model,

$$TR_t = b_0 + b_1 t = 30161 + 172 t$$
 (Truck count/month),

and the amount of annual increase for 5-axle single trailer trucks is 172 * 12. Therefore, during the 41-month period beginning in January 1993, the annual growth rate for 5-axle single trailer trucks is the amount of annual increase divided by the first month count, which is about 7 percent.

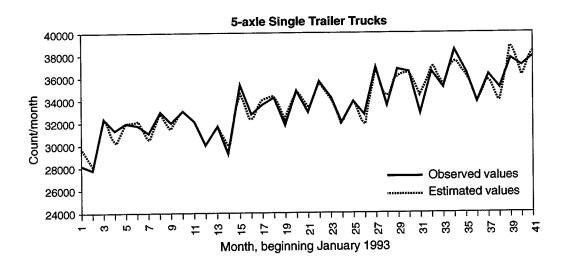


Figure 3.6 Estimated and observed values of 5-axle single trailer truck

Table 3.4 Forecasted and observed 1996 counts of 5-axle single trailer trucks

t	SNt	TR _t = 30161.05+171.742t	TR _t *SN _t	B _t (95)	$[TR_t*SN_t-B_t(95),$ $TR_t*SN_t+B_t(95)]$	1996 Count
37	0.983	36515.504	35881.309	1241.309	[34640, 37122]	36374
38	0.922	36687.246	33817.890	1241.309	[32576, 35059]	35079
39	1.056	36858.988	38919.405	1241.309	[37678, 40160]	37751
40	0.979	37030.73	36271.366	1241.309	[35030, 37512]	37083
41	1.032	37202.472	38410.825	1241.309	[37169, 39652]	37919

Note: B_t(95) is the error bound in a 95 percent confidence interval.

3.3 TRAFFIC GROWTH RATE FOR OTHER TRUCK CLASSES

In addition to 5-axle single trailers, which accounted for about 60 percent of the total truck traffic at the WIM site in 1995, 2-axle/6 tire single units (2D) contributed approximately 26 percent of the truck traffic. The daily counts of 2Ds in September and October for the same period of three years are plotted in Figure 3.7. The data for 2D trucks showed a weekly pattern that differed from the pattern for 5-axle single trailers (see Figure 3.2), but the percent increase in monthly count was almost the same (see Appendix C for 5-axle single trailer trucks and other truck types). Traffic growth rate and seasonal factor for 2D trucks can be obtained by making another time-series analysis similar to that described above for 5-axle single trailers. Although these calculations were not made, a visual analysis

of the plotted data indicated that these two truck classes, 5-axle single trailer and 2D, have a similar growth rate at this site. Among other truck classes, Type 5 trucks (3-axle single unit), which account for 3.5 percent of the total truck traffic, displayed a clear weekly pattern but no increase in count; Type 8 trucks (4-axle single trailer), which account for 5 percent of the truck traffic, showed an unclear weekly pattern and a small decrease in count. All other truck classes — Type 6 trucks (4 or more axle single unit), Type 7 trucks (3-axle single trailer), Type 10 truck (6 or more single trailer), Type 11 trucks (5-axle multi-trailer), Type 12 trucks (6-axle multi-trailer), and Type 13 trucks (7 or more axle multi-trailer) — displayed no regular weekly pattern and no consistent change in count. The growth rates for, and proportions of, all truck classes are summarized in Table 3.5.

2-axle/6-tire Single Unit Trucks, Type 4 (2D) (Sep.-Oct., Site2)

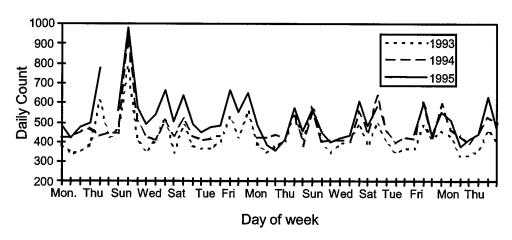


Figure 3.7 Daily count of 2D trucks in September and October, 1993–1995

3.4 SUMMARY

According to this study, the annual growth rate for 5-axle single trailer trucks from 1986 through 1994 was about 4 percent for the data set obtained from TxDOT's adjusted 24-hour non-direction counts using a linear regression method. The annual growth rate for southbound 5-axle single trailer trucks from 1993 through 1994 was about 7 percent using WIM data and a time-series method.

The data set from TxDOT was sampled from 24-hour non-directional classification manual counts. Data were available from 1986 to 1994, with some data missing for 1987 and 1989. WIM data from 1993 to 1995 were available for southbound traffic. The WIM data sample included almost every vehicle passing by the WIM site. The WIM data have a larger sample size but a shorter time span than the TxDOT data.

The advantage of the time-series method used in this study (compared with a linear regression method) is that both monthly change and the trend of change can be captured by the time series model; linear regression can only describe the trend.

Table 3.5 Composition and approximate change in count for all truck classes, 1993–1995

	Type 4	Type 5	Type 6	Type 7	Type 8	Type 9	Type 10	Type 11	Type 12	Type 13
Percentage of Trucks	26.30%	3.50%	0.00%	1.70%	5.00%	59.20%	0.80%	2.80%	0.50%	0.00%
Weekly Pattern	clear	clear	no	unclear	unclear	strong	unclear	clear	unclear	no
Change in Count	increase	no	no	no	decrease	increase	no	no	no	no
Annual Rate of Change	5%	0%	0%	0%	0%	6%	0%	0%	0%	0%

CHAPTER 4. OBSERVED TRUCK LOADING ANALYSIS

The analysis of observed truck loading is an important part of this study, inasmuch as it is used to forecast future truck loading. A computer program was developed in C language to process data from the PAT DAW100 WIM systems. Load frequency distributions for each axle group of each truck type were analyzed by using WIM data of 1993, 1994, and 1995. Comparisons were conducted among distributions between sites, years, and different axle groups.

4.1 COMPUTER PROGRAM FOR PROCESSING LOAD DATA

As stated in Section 2.3, vehicle wheel load information is recorded in an ASCII data file. An axle load is calculated by adding the wheel load on both ends of the axle. Based on an evaluation of the TxDOT classification scheme, it is desirable to amplify some of the axle groups. For example, the 3S2 and 2S3 truck classes are included in Type 9 by TxDOT classification. In addition, the 3S2 spread (Ref 18), which separates the last tandem of a 3S2 so as to act like two single axles, is also included in Type 9. The axle-group arrangements of these three truck classes are different. There is one steering axle, one drive-tandem axle, and one trailer-tandem axle on a 3S2; on a 2S3, there is one steering axle, one drive-tandem axle, and one tridem axle; and on a 3S2 spread, there is one steering axle, one drive-tandem axle, and two trailer-single axles.

In order to further classify trucks into each vehicle type, some condition judgments are used to amplify TxDOT's axle-spacing scheme (see Table 2.1 and Section 2.3.2). And 3S2 spread truck class was added into TxDOT classification scheme. The load interval for tandem axles and tridem axles is in 4-kip increments from 0 to 48 kip. The load interval for a single axle is in 2-kip increments from 0 to 24 kip. Pangburn's report (Ref 18) discussed the fact that the steering axles of some trucks are more than 12 kip. In the AASHO Road Test, the steering axle loads ranged from 2 to 12 kip and were not analyzed separately but were incorporated into the single-axle and tandem-axle load factors. However, the damage caused by steering-axle loads over 12 kip should not be ignored. The computer program described here only counts the steering-axle loads more than 12 kip and gives the frequency distribution with the loads ranging from 12 to 20 kip.

The axle group lists for all truck classes are listed below. The computer program computes the weight distributions of all the following axle groups. The letter "S" stands for the single axle group, "T" stands for the tandem axle group, "R" stands for the tridem axle group, and "E" stands for the steering axle. "DT" and "DS" were named, respectively, for the tandem and single axle group of 3S2 spread which was added into the TxDOT classification scheme. The first number in the footnote of the axle group stands for the vehicle type, while the second number indicates the number of repetitions of the same axle group. If there is only one repetition of the same axle group in any truck class, the second number is ignored.

```
Type 4
     2D - S_{41}, E_{41}
     2D-1 axle trailer — S_{42}, S_{43}, E_{42}
     2D-2 axle trailer — S_{44}, T_4, E_{43}
• Type 5
     3-axle single unit (3A) — T_5, E_5

    Type 6

     4-axle single unit (4A) — R_6, E_{62}
     4-axle single unit (Rig) — S_6, T_6, E_{61}
• Type 7
     2S1 - S_{71}, S_{72}, E_7
• Type 8
     2S2 - S_{81}, T_{81}, E_{81}
     3S1 - T_{82}, S_{82}, E_{82}
• Type 9
    2S3 — S<sub>9</sub>, R<sub>9</sub>, E<sub>91</sub>
     3S2 - T_{91}, T_{92}, E_{92}
     3S2 spread — DT<sub>9</sub>, DS<sub>91</sub>, DS<sub>92</sub>, E<sub>93</sub>

    Type 10

    3S3 - T_{10}, R_{10}, E_{10}
• Type 11
     2S1-2 - S_{111}, S_{112}, S_{113}, S_{114}, E_{11}
• Type 12
    2S2-2 - S_{1211}, T_{121}, S_{1212}, S_{1213}, E_{121}
     3S1-2 - T_{122}, S_{1221}, S_{1222}, S_{1223}, E_{122}
• Type 13
```

 $3S2-2 - T_{131}$, T_{132} , S_{131} , S_{132} , E_{13}

Appendix D contains an example of how to use the program to calculate axle-load frequency; an output file for March 23, 1995, is also provided.

4.2 COMPARISON OF LOAD DISTRIBUTION AMONG YEARS

Data for the years 1993, 1994, and 1995 were processed using the computer program. Load distributions of the two tandem axles of 3S2s were used as examples to explore the difference among years. Sample sizes (observations) are listed in Table 4.1.

The load distributions for all three years are shown in Figure 4.1 and Figure 4.2. It can be observed that the distributions of the three years are almost identical.

Table 4.1 Sample size of 3S2 trucks

Year	North Site	South Site
1993	222,196	212,681
1994	228,105	299,304
1995	247,643	278,395

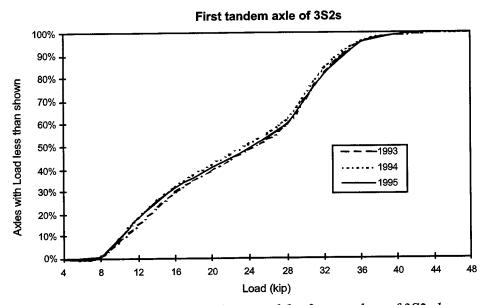


Figure 4.1 Load frequency distribution of the first tandem of 3S2s by year

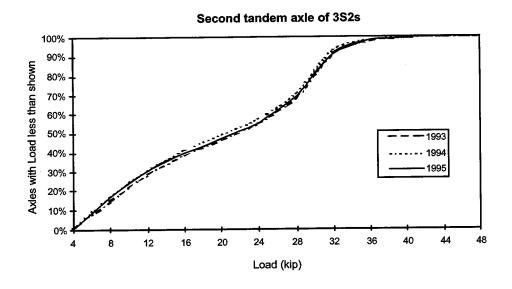


Figure 4.2 Load frequency distribution of the second tandem of 3S2s by year

4.3 COMPARISON OF LOAD DISTRIBUTION BETWEEN SITES

Comparison of the traffic between sites was discussed in Section 2.4.2. Most of the traffic went through both sites. However, some vehicles pass through only the north site and then turn at US 287. Figure 4.3 and Figure 4.4 show the differences in load distribution of the two tandem axles of 3S2 between two sites. Load distributions of two tandem axles of both sites were similar. Figure 4.5 shows the difference of the single axle of 2D between sites. The load distributions of the two sites were almost identical.

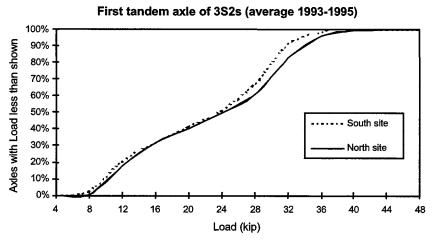


Figure 4.3 Load frequency distribution of the first tandem of 3S2s at north and south sites

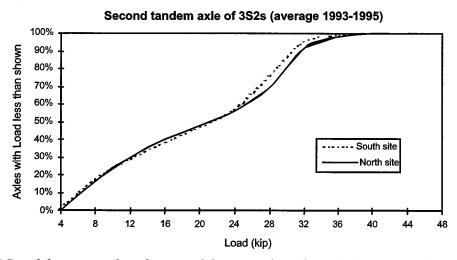


Figure 4.4 Load frequency distribution of the second tandem of 3S2s at north and south sites

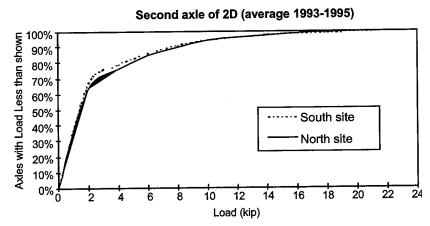


Figure 4.5 Load frequency distribution of the second axle of 2D at north and south sites

4.4 COMPARISON OF LOAD DISTRIBUTION OF SAME AXLE GROUP IN SAME OR DIFFERENT TRUCK CLASS

The same axle groups were observed to have different load distributions when they were in different truck classes or at a different position on the same truck class. Thus, it was necessary to calculate the load frequency distribution by truck class and by the position on the truck.

4.4.1 Difference of Load Distribution of First and Second Tandem Axle on 3S2s

A similar load distribution shape was observed for the two tandem axles on 3S2s. However, the load distribution of the first (tractor) tandem axle was shifted to the right of the second (trailer) tandem axle (see Figure 4.6). This difference indicates that the tractor tandem axle carried a heavier load than the trailer tandem axle.

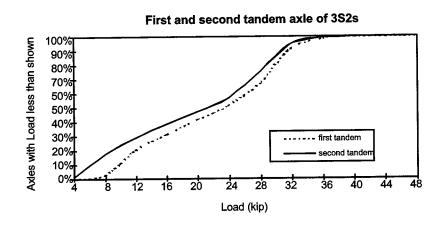


Figure 4.6 Load frequency distribution between the first and second tandem axle of 3S2s

4.4.2 Difference of Load Distribution of the Tractor Tandem Axle Between 3S2 and 3S2 Spread

Different distribution shapes were observed for the tractor tandem axle of 3S2 and 3S2 spread (see Figure 4.7). The two distributions intersected at 28 kip. For loads less than 28 kip, the tractor tandem of a 3S2 spread carried a heavier load than that of a 3S2. For loads more than 28 kip, the tractor tandem of a 3S2 spread carried lighter loads, as compared with a 3S2. The percentage of tractor tandem axles on 3S2s exceeding the legal axle load limit was greater than that of 3S2 spreads.

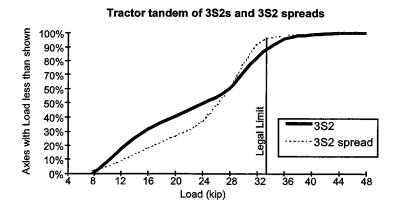


Figure 4.7 Load frequency distribution of the first tandem between 3S2s and 3S2 spreads

4.4.3 Difference of Load Distribution of the Four Single Axles on the 2S1-2

Load frequency distributions of the four single axles on the 2S1-2 are shown in Figure 4.8. The first single (drive) axle carried a heavier load than the second (semi-trailer) single axle. The third axle and the fourth axle (full trailer) have similar load distributions, and both carried less load than the second axle.

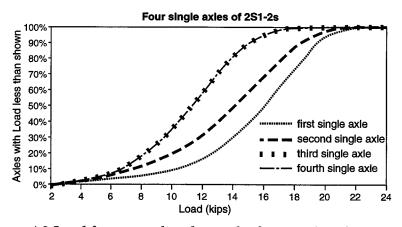


Figure 4.8 Load frequency distribution by four single axles of 2S1-2s

4.4.4 Steering Axle

The percentage of the steering axles over 12 kip was calculated for each truck class. The results of 1995 data are shown in Table 4.1. A small percentage of the steering axles over 12 kip was observed for the large samples. However, taken together the steering axle loads greater than 12 kip may cause additional pavement damage that is not accounted for in current practice.

Table 4.2 Percent of steering axles over 12 kip

Truck Classes	Number of Observations	Percentage over 12 kip
2D	167502	0.15%
3A	30661	4.11%
Rig	977	57.86%
2S1	19663	4.90%
2S2	10178	0.13%
3S1	23606	10.36%
3S2	278395	1.60%
3 S 3	8891	18.55%
2S1-2	15488	2.23%
2S2-2	159	25.79%
3S1-2	2613	2.03%
3S2 - 2	458	20.61%

CHAPTER 5. FORECASTING ESALS

For pavement evaluation and design, an estimate of the cumulative traffic loading expected during the analysis period is absolutely essential. The final step, therefore, in using weigh-in-motion (WIM) data as a basis for forecasting future traffic loads is to convert them to a common denominator in terms of expected damage to pavements, the observed loads of various magnitudes carried by steering, single, tandem, and tridem axles that occur in typical arrangements on different types of vehicles (sometimes referred to as mixed traffic). A method, now used widely, for expressing axle loads from mixed traffic vehicles in terms of the equivalent number of passes of a standard axle load was developed in the late 1950s at the AASHO Road Test.

5.1 THE AASHO ROAD TEST AND EQUIVALENT SINGLE AXLE LOAD (ESALS)

The AASHO (now AASHTO) Road Test was completed in 1960 after some two years of testing pavements under controlled traffic loading (Refs. 11 and 12). Axle load equivalency factors for pavement design were derived from a statistical analysis of the AASHO Road Test data. These equivalency factors can be used to convert one application of an axle load of a particular magnitude to the number of applications of a standard axle load (e.g., an 18-kip single axle load), which can be expected to cause equivalent damage to a given pavement structure. The cumulative number of standard (e.g., 18-kip single) axle loads is referred to as the number of equivalent single axle loads (ESALs). The concept and application of axle load equivalent factors is summarized below.

Load Equivalence Factors for Flexible Pavements. Equivalency factor equations for flexible pavements presented in ASTM E1318-94 (Ref 3) are:

$$\log W_{t} = 5.93 + 9.36\log(\overline{SN} + 1) - 4.79\log(L_{1} + L_{2}) + 4.331\log L_{2} + G_{t}/\beta$$

$$\beta = 0.40 + \frac{0.081(L_{1} + L_{2})^{3.23}}{(\overline{SN} + 1)^{5.19} L_{2}^{3.23}}$$

where

 W_t = number of axle load applications at the end of time t for axle sets with dual tires,

SN = structural number, an index derived from an analysis of traffic, roadbed soil conditions, and regional factor that may be converted into the thickness of flexible pavement layers through the use of suitable layer coefficients that are related to the type of material being used in each layer of the pavement structure,

 L_1 = load on one single axle, or on one tandem-axle set for dual tires, kip,

 L_2 = axle code (one for single axle, two for tandem-axle sets),

p_t = serviceability at end of time t (serviceability is the ability of a pavement at the time of observation to serve high-speed, high-volume automobile and truck traffic.),

 G_t = a function (the logarithm) of the ratio of loss in serviceability at time t to the potential loss taken to a point where $p_t = 1.5$, or

$$G_t = log \left[\frac{42 - P_t}{4.2 - 1.5} \right]$$
, and

 β = a function of design and load variables that influences the shape of the P-verses-W serviceability curve.

The following equation expresses any axle load (W_t) in terms of the number of applications of the standard 18-kip single-axle load (W_{18}) that would cause the same pavement damage as the (W_t) axle load,

$$E_{i} = \frac{W_{t_{18}}}{W_{t_{i}}} = \left[\frac{(L_{1} + L_{2})^{4.79}}{(18+1)^{4.79}} \right] \left[\frac{10^{G_{t}/\beta_{18}}}{(10^{G_{t}/\beta_{i}})L_{2}^{4.331}} \right]$$

This expression is defined as the equivalency factor for flexible pavements.

Load Equivalence Factors for Rigid Pavements. Equivalency factor equations for rigid pavements presented in ASTM E1318-94 are:

$$logW_t = 5.85 + 7.35(logD+1) - 4.62log(L_1 + L_2) + 3.28logL_2 + G_t/\beta$$

$$\beta = 1.0 + \frac{3.63(L_1 + L_2)^{5.20}}{(D+1)^{8.46}L_2^{3.52}}$$

where

D = thickness of rigid pavement slab, in., and

$$G_{t} = log \left[\frac{4.5 - P_{t}}{4.5 - 1.5} \right].$$

All other terms are as defined above.

The following equation expresses any axle load (W_t) in terms of the number of applications of the standard 18-kip single-axle load (W_{18}) that would cause pavement damage equivalent to that caused by one single pass of the (W_t) axle load,

$$E_{i} = \frac{W_{t_{18}}}{W_{t_{i}}} = \left[\frac{(L_{1} + L_{2})^{4.62}}{(18+1)^{4.62}}\right] \frac{10^{G_{i}/\beta_{18}}}{(10^{G_{i}/\beta_{i}})L_{2}^{3.28}}$$

This expression is defined as the equivalency factor for rigid pavements.

5.1.1 Steering-Axle and Tridem-Axle Equivalency Factors

Test trucks at the AASHO Road Test had steering-axle loads (on single tires) that ranged between 2 and 12 kip, while single-axle loads (on dual tires) were between 2 and 30 kip and tandem-axle loads (on dual tires) were between 24 and 48 kip. In developing the AASHO axle-load equivalency factor equations, the effect of steering-axle loads (less than 12 kip) was not accounted for separately, but was included with that of the other axles on the test vehicle. When analyzing WIM data, it is important, therefore, to include the additional damaging effect of steering-axle loads in excess of 12 kip in ESAL calculations. A table of equivalency factors for steering-axle loads greater than 12 kip on flexible pavements was developed by Carmichael et al. (Ref 6) using a concept of pavement surface curvature and the resulting tensile strains in the asphalt pavement. Their analysis indicated that single-tire loads produced more damage than the same loads on dual tires. This concept has been substantiated by the theoretical work of others (Ref 7). The tabular values of equivalency factors for steering-axle loads greater than 12 kip on flexible pavements that were developed by Carmichael et al. are incorporated into the computer programs described herein.

The analysis techniques used by Carmichael et al. to separate the relative damage to rigid pavements by single and dual-tire loads were considered by the authors to be unsuccessful in developing equivalency factors for steering axles on rigid pavements. As no other work on this problem is known, no additional damage to rigid pavements by steering-axle loads greater than 12 kip is assessed by the computer programs described herein.

Although tridem (triple) axles were not included on the test trucks at the AASHO Road Test, they are now used rather frequently. Carmichael et al. applied the same concept of pavement surface curvature and tensile strain that was used successfully for steering axles to develop equivalency factors for tridems on flexible pavements. Subsequently, such equivalency factors were calculated by Izadmehr (Refs 13, 15, and 16) by setting the term L_2 = 3 in the AASHO flexible pavement equivalency factor equations; in those calculations, there was very close agreement with those shown by Carmichael et al. for flexible pavements. Izadmehr also calculated rigid pavement equivalency factors for tridem axles by the same technique and pointed out that they "appear to be reasonable, but they have not been validated through experimental work" (Ref 15). In the computer programs described herein, tridem-axle load equivalency factors are calculated by setting the term L_2 = 3 in the AASHO equivalency factor equations for both flexible and rigid pavements.

5.1.2 Weighted Average Equivalency Factor for Each Vehicle Type

The weighted average equivalency factor for each vehicle type can be obtained by multiplying the axle load frequency distributions of each vehicle type by their corresponding equivalency factors. An example of the calculation of weighted average equivalency factors for 3S2 and 3S2 spread trucks is shown in Table 5.1. Weighted average equivalency factors for each truck type in the TxDOT classification scheme are calculated in the computer program developed for this study by the same method illustrated in the Table 5.1 for 3S2 and 3S2 spread trucks and by inputting the pavement type, terminal serviceability (p_t), and the structural number (SN) for flexible pavement or the slab thickness (d) for rigid pavement. The weighted average ESALs of each truck classes for 1995 south site data are summarized in Table 5.2.

5.2 DIFFERENCE IN ESALS OF 3S2 AND 3S2 SPREAD

As stated in Section 4.1, the axle group arrangement of a 3S2 spread type truck is different from that of a 3S2. The weighted average ESALs per 3S2 spread and 3S2 truck were calculated to illustrate the difference in their corresponding ESALs. The following assumed data were used for this analysis: flexible pavement, a terminal serviceability $p_t = 2.5$ and a structural number SN = 6. The axle load frequency distributions were obtained for the data of 1995, south site. According to the results of Section 4.2, the axle load frequency distributions of 1995 were almost the same as those of 1993 and 1994. The weighted average ESALs from a 3S2 spread and a 3S2 are shown in Table 5.1. The difference of ESALs per vehicle is 0.82, which is about 60 percent of the ESALs of one 3S2 spread. Pangburn reported (Ref 18) that the ESALs of 3S2 spread account for 12 percent of the daily ESALs by using the same data set as this study. Therefore, by not classifying 3S2 spread trucks separately, about 7 percent of the daily ESALs are not accounted for if these classes are not separated. This can result in significant and unexpected damage to a pavement structure.

5.3 AN EXAMPLE OF ESAL CALCULATIONS FOR FORECASTED YEAR

The following data are needed to forecast ESALs for a future year:

- 1. AADT by truck types of base year. Since traffic growth rate is analyzed individually for each truck type, the AADT by truck type is used in the forecast.
- 2. Traffic growth rate assigned to each truck type. The time series model developed in this study or other applicable methods can be used to obtained the annual growth rate (g). The future cumulative traffic volume can be obtained by multiplying the AADT of the base year by 365 days, and by the following simple growth rate or the compound growth factor, which is used in the AASHTO Guide:

Simple Growth Rate:

Growth Factor =
$$n + \frac{1}{2}n (n-1) g$$

Compound Growth Rate:

Growth Factor =
$$\frac{[(1+g)^n - 1]}{g}$$

where:

g = annual growth rate

n = analysis period in years

- 3. Axle weight distribution of each truck type for the forecasted year. According to the analysis described in Chapter 4, the axle weight distribution remained virtually constant over the analysis period.
- 4. Weighted ESALs per vehicle by truck type. Weighted ESALS per vehicle can be calculated by multiplying the axle weight distributions by their respective equivalency factors. Pavement type, terminal serviceability (pt), and pavement structural number (SN) or slab thickness (d), are needed to obtain the equivalency factors

A computer program was developed for this study to automatically calculate the cumulative ESALs for the analysis period. An example of the output of the program is shown in Table 5.3. In this example, a 20-year analysis period is used, and a flexible pavement with pt=2.5 and SN=6 is assumed. The data for AADT and weighted ESALs per vehicle were obtained from 1995 WIM data at the site south of Corrigan. The number of ESALs derived using this procedure represents the total ESALs for two lanes. This number can be distributed between lanes using a lanewise distribution factor.

Table 5.1 Calculation of ESALs for 3S2 and 3S2 spread (data from 1995, south site)

3S2						3S2 spread							
									Second Single				
Single	e axle	Tandem axle		I Hot I thirt to I			Tandem						
Weight	Equiv.	Weight	Equiv.	Weight	ESALs	Weight	ESALs		ESALs	Weight	ESALs		ESALs
range	factor	range	factor	Dist.		Dist.		Dist.		Dist.		Dist.	
0-2	0.0002	0-4	0	0.2%	0.0000	1.2%	0.0000	0.7%	0.0000	3.3%	0.0000	5.2%	0.0000
2-4	0.002	4-8	0.001	2.7%	0.0000	17.3%	0.0002	2.1%	0.0000	3.7%	0.0001	4.3%	0.0001
4-6	0.002	8-12	0.006	19.2%	0.0012	11.9%	0.0007	9.9%	0.0006	7.9%	0.0007	7.2%	0.0007
6-8	0.031	12-16	0.024	10.7%	0.0026	9.4%	0.0023	8.4%	0.0020	5.5%	0.0017	5.8%	0.0018
8-10	0.031	16-20	0.07	10.3%	0.0072	8.5%	0.0060	9.0%	0.0063	6.4%	0.0051	6.4%	0.0051
10-12	0.03	20-24	0.166	9.7%	0.0161	9.6%	0.0159	13.2%	0.0220	6.0%	0.0105	6.0%	0.0106
	0.170	24-28	0.342	16.7%	0.0573	20.3%	0.0694	32.7%	0.1117	10.0%	0.0342	11.1%	0.0380
12-14		1 -	0.633	23.8%	0.1507	18.3%	0.1160	22.1%	0.1398	25.0%	0.1518	28.6%	0.1734
14-16	0.606	28-32		5.6%	0.0608	2.7%	0.0296	1.5%	0.0164	25.8%	0.2576	21.9%	0.2189
16-18	l 1 5 5	32-36	1.08		0.0008	0.6%	0.0100	0.3%	0.0046	5.4%	0.0836	2.9%	0.0456
18-20	1.55	36-40	1.73	0.9%			0.0100	0.1%	0.0037	0.8%	0.0192	0.5%	0.0112
20-22	2.3	40-44	2.61	0.1%	0.0019	0.1%			0.0000	0.2%	0.0055	0.1%	0.0020
22-24	3.27	44-48	3.79	0.0%	0.0000	0.0%	0.0000	0.0%		0.276		0.170	0.5073
Weighte	Weighted Average ESALs per axle				0.3130		0.2536		0.3072	L	0.5700		0.5075
Total ESALs per Truck Type			0.5666			1.3845							

Table 5.2 Summary of weighted average ESALs for each truck class

Truck classes	Weighted Average ESAL
	Value
2D	0.0311
2D-1 axle trailer	0.1531
2D-2 axle trailer	0.351
3-axle single unit (3A)	0.1780
4-axle single unit (4A)	0.2969
4-axle single unit (Rig)	0.7768
2S1	0.2270
2S2	0.2613
3S1	0.1467
2S 3	0.1109
3S2	0.5666
3S2 spread	1.3845
3S3	0.8509
2S1-2	1.5206
2S2-2	0.5001
3S1-2	0.6154
3S2-2	0.7452

Table 5.3 Example of calculation of ESALs (compound growth rate)

					$p_t = 2.5$
Analysis Perio	d: 20 years				SN = 6
Truck Types	Current Traffic (AADT)	Growth rate	Design Traffic (20 years' accumulation)	Weighted ESALs (/vehicle)	Design ESALs
Type 4	600	5%	7,240,140	0.031	224,444
Type 5	70	0%	511,000	0.178	90,958
Type 6	2	0%	14,600	0.297	4,336
Type 7	30	0%	219,000	0.277	60,663
Type 8	100	0%	730,000	0.261	190,530
Type 9	1,100	6%	14,771,185	0.567	8,375,261
Type 10	20	0%	146,000	0.851	124,246
Type 11	60	0%	438,000	1.521	666,198
Type 12	10	0%	73,000	0.615	44,895
Type 13	1	0%	7,300	0.745	5,438
All Truck	1,993		24,150,225	Total ESALs	9,746,969

CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS

The work reported herein is part of a continuing research project that is concerned with the implementation of a long-range pavement rehabilitation plan in TxDOT's Lufkin District on US 59 in east Texas. The focus of this work has been on the development of an axle-load forecasting methodology, one based on the processing of voluminous traffic data (about 7,000 vehicle records per day for 41 months at two stations) that have been obtained from special weigh-in-motion (WIM) systems located within two pavement test sites near Corrigan, Texas. The principal objectives were (1) to develop efficient computer code for processing the binary data files recorded by the WIM systems and for automatically grouping vehicles according to TxDOT classes; (2) to process the WIM data to develop axle-load frequency distributions for the individual axles on each vehicle class; (3) to identify an effective axle-load forecasting procedure for each vehicle class; and (4) to implement the computer code needed to estimate the cumulative equivalent single axle loads (ESALs) that can be expected over a selected future time period. Accomplishment of these objectives serves as the basis for the following conclusions and recommendations.

6.1 CONCLUSIONS

- 1. The C-language computer program, which was written to address the first two objectives, processes one month's worth of the binary data files recorded by a WIM system in about 10 minutes on a Pentium-processor PC. The computer program that was developed previously to accomplish these functions used a Microsoft EXCEL macro, which was recognized as being inefficient, but which proved valuable in the early stages of the project to establish a strategy for analyzing the complex data sets. The EXCEL macro program required approximately 8 hours on the same computer to accomplish similar results. Thus, the new C-language program is much more efficient.
- 2. The overall error rate in classifying vehicles into TxDOT classes (via number and spacing of axles on the vehicle) was about 0.5 percent of all vehicles observed during 1995 at the south WIM site. Small adjustments were made to the axle-spacing values currently used by TxDOT in order to include certain vehicles in the proper class. Possible causes of the erroneous classification are discussed.
- 3. Of all vehicles, motorcycles, 2-axle passenger cars, pickup trucks and buses accounted for 73 percent, and trucks accounted for 27 percent. Of the trucks, 59 percent were 5-axle semi-trailers, and 26 percent were 2-axle 6-tire single units.
- 4. Traffic counts between the north and south WIM sites were almost identical on the weekend (Saturday and Sunday). During weekdays, the traffic count at the north site was always slightly higher than that at the south site.
- 5. In general, 72 percent of the vehicles traveled in the right-hand lane and 28 percent traveled in the left-hand lane. Moreover, 80 percent of the trucks traveled in the right-hand lane.

- 6. A linear regression method was used to evaluate the annual change (growth rate) in the number of 5-axle semi-trailer trucks that used US 59 near the WIM station on an average day, as reflected in TxDOT reports for 1986 to 1994 (1987 and 1989 data were not available). The reported values were derived from one 24-hour, non-directional manual classification count per year, adjusted to reflect an average daily count at two locations on US 59 adjacent to (one north of and one south of) its intersection with FM 62 in Polk County, and only a few miles south of the WIM stations. The annual, non-directional growth rate for this truck class during these years was approximately 4 percent.
- 7. A time-series method was used with data obtained from the south-site WIM system to study changes in the count of southbound 5-axle semi-axle trailer trucks during a 41-month period beginning in January 1993. The annual growth rate for 5-axle semi-trailer trucks is about 7 percent from the WIM data, which were sampled from almost every vehicle passing by the WIM site. The WIM data have a larger sample size but a shorter time span than the TxDOT data.
- 8. There was no change of loading pattern during 1993, 1994, and 1995. The axle weight distribution for the same axle group remained the same. It was observed that the axle weight distributions for the same axle were similar or almost identical between the two WIM sites. The same axle groups were observed to have different load distributions when they were in different truck classes or at a different position on the same truck class. Thus, it is necessary to calculate the load frequency distribution by truck class and by the axle position on the truck.
- 9. A small percentage of steering axles over 12 kip was observed in the large samples. These steering-axle loads greater than 12 kip may cause additional pavement damage that is not usually accounted for properly in current practice. Their effects are, however, included in the analyses (computer programs) reported herein.
- 10. The 3S2-spread truck was found to have axle loads heavier than those of the normal 3S2 truck. Moreover, the ESALs generated by the observed 3S2-spreads were over 2 times more than those generated by the 3S2 trucks.

6.2 RECOMMENDATIONS

- 1. A study of economic factors, the population, and lane-use of the studied area will help to improve the forecast of future traffic.
- 2. Traffic growth rate and a seasonal factor for 2D trucks can be obtained by making another time-series analysis similar to the one described for 5-axle, semi-trailer trucks.
- 3. Based on evaluation of the TxDOT classification scheme, it might be desirable to separate some of the axle groups. Trucks, such as 3S2 and 2S3, whose axle weight distributions are very different, should be classified separately.
- 4. It is necessary to add WIM system capability on northbound US 59 close to the existing sites to quantify the traffic count and loading data for this direction.

REFERENCES

- 1. American Association of State Highway and Transportation Officials, "AASHTO Guidelines for Traffic Data Program," Joint Task Force on Traffic Monitoring Standards of the AASHTO Highway Subcommittee on Traffic Engineering, Washington, D.C., 1992.
- 2. American Association of State Highway and Transportation Officials, "AASHTO Guide for Design of Pavement Structures," Washington, D.C., 1993.
- 3. American Society for Testing and Materials, "Standard Specification for Highway Weigh-in-Motion (WIM) Systems with User Requirements and Test Method," Designation E 1318-94, Reprinted from the Annual Book of ASTM Standards, Section 4—Construction, Vol. 04.03, Philadelphia, 1995.
- 4. Ang, A. H-S., and Tang, W. H., *Probability Concepts in Engineering Planning and Design*, John Wiley and Sons, 1975.
- 5. Bowerman, B. L., and O'Connell, R. T., *Time Series Forecasting: Unified Concepts And Computer Implementation*, 2nd edition, Duxbury Press, Boston, 1979.
- 6. Carmichael, III, R. F., Roberts, F. L., Jodahi, P. R., Treybig, H. J., and Finn, F. N., "Effects of Changes in Legal Load Limits on Pavement Costs: Volume 1—Development of Evaluation Procedure," Federal Highway Administration Report No. FHWA-RD-78-98, July 1978.
- 7. Deacon, J. A., "Load Equivalency in Flexible Pavements," *Proceedings*, Association of Asphalt Paving Technologists, Vol. 38, 1969.
- 8. Deitel, H. M., and Deitel, P. J., C: How To Program, 2nd edition, Prentice Hall International, Inc., 1994.
- 9. Garner, J. E., and Lee, C. E., "Augmented Weigh-in-Motion System for Traffic Data Collection and Analysis," Transportation Research Record No. 1501, Pavement-Vehicle Interaction and Traffic Monitoring, Transportation Research Board, National Research Council, National Academy Press, Washington, D.C., 1995, pp. 81-86.
- 10. Gujarati, D. N., Basic Econometrics, 3rd edition, McGraw-Hill, Inc., 1995.
- 11. Highway Research Board, "The AASHO Road Test," Report 5, Pavement Research, Highway Research Board Special Report 61E, 1962.
- 12. Highway Research Board, "The AASHO Road Test," Proceedings of a conference held May 16-18, 1962, St. Louis, Missouri, Special Report 73, Washington, D.C., 1974.
- 13. Izadmehr, B., "Truck Traffic Loading on Multilane Highways," master's thesis, The University of Texas at Austin, 1982.
- 14. Janacek, G., and Swift, L., *Time Series: Forecasting, Simulation, Applications*, Eillis Horwood, 1993.

- 15. Lee, C. E., Izadmehr, B., Machemehl, R. B., "Demonstration of Weigh-in-Motion Systems for Data Collection and Enforcement," Report No. 557-1F, Center for Transportation Research, The University of Texas at Austin, 1985.
- 16. Lee, C. E., Shankar, P. R., and Izadmehr, B., "Lateral Placement of Trucks in Highway Lanes," Report No. 310-1F, Center for Transportation Research, The University of Texas at Austin, 1983.
- 17. Leidy, J. P., "Measurement and Analysis of Traffic Loads Along the Texas-Mexico Border," master's thesis, The University of Texas at Austin, 1994.
- 18. Pangburn, J. W., "Preliminary Research Findings on Traffic-Load Forecasting Using Weigh-in-Motion Data," Research Report 987-5, Center for Transportation Research, The University of Texas at Austin, April 1996.
- 19. PAT Equipment Corporation, Inc., "DAW 100 Bending Plate, System Description of Automatic Vehicle Weight and Classification System," 1992.
- 20. Texas Department of Transportation, "Manual Recorder Instruction Manual," Transportation Planning and Programming Division, 1996.
- 21. U.S. Department of Transportation, Federal Highway Administration, "Traffic Monitoring Guide," Office of Highway Information Management, Washington, D.C., 1995.

APPENDIX A.

A.1 CAR PROGRAM COMPUTER PROGRAM FOR VEHICLE SORTING AND AXLE-LOAD FREQUENCY DISTRIBUTION

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <dos.h>
#include <math.h>
#define MAP1 12
#define MAP2 12
#define MAP4 17
#define MAP3 4
#define OP_COUNT 1
#define OP_WEIGHT 2
int Calculate(char *infile, char *outfile);
void FindWeight(int lane, int length, double * data);
static int weight[13][5];
static int map1(double data);
static int map2(double data);
static int map3(double data);
static void Initialize();
static void PrintWeight(char *ff, char *outfile);
static long get_sum(long *tt, int num, double *ss);
static double get_beta(double L1, double L2);
static double get_factor(double L1, double L2);
static double get_wt(double L1, double L2);
// type 4
              s41[MAP1], s42[MAP1], s43[MAP1], s44[MAP1];
static long
              t42[MAP2];
static long
               e41[MAP3], e42[MAP3], e43[MAP3];
static long
// type 5
               t5[MAP2], e5[MAP3];
static long
// type 6
               s6[MAP1];
static long
               t6[MAP2], r6[MAP4];
static long
               e61[MAP3], e62[MAP3];
static long
// type 7
static long s71[MAP1], s72[MAP1];
static long e7[MAP3];
// type 8
               s81[MAP1], s82[MAP1];
static long
               t81[MAP2], t82[MAP2];
 static long
               e81[MAP3], e82[MAP3];
 static long
// type 9
 static long s9[MAP1], ds91[MAP1], ds92[MAP1];
 static long r9[MAP4], t91[MAP2], t92[MAP2], dt9[MAP2];
```

```
static long e91[MAP3], e92[MAP3], e93[MAP3];
// type 10
static long
              r10[MAP4], t10[MAP2];
static long
              e10[MAP3];
// type 11
static long s111[MAP1], s112[MAP1], s113[MAP1], s114[MAP1];
static long e11[MAP3];
// type 12
static long
              s1211[MAP1],s1212[MAP1],s1213[MAP1],
                      s1221[MAP1],s1222[MAP1],s1223[MAP1];
              t121[MAP2], t122[MAP2];
static long
static long
              e121[MAP3],e122[MAP3];
// type 13
static long
              t131[MAP2],t132[MAP2];
              s131[MAP1],s132[MAP1];
static long
static long
              e13[MAP3];
static int op;
static int pave; /* pavement */
static double serv; /* terminal serviceability */
                   /* structural number */
static double sn:
static double gt;
static double beta18:
static double wt18;
static double factor1[MAP1], factor2[MAP2], factor3[MAP4];
static double ffs41 = 0.0, ffs42 = 0.0, ffs43 = 0.0, ffs44 = 0.0;
static double fft42 = 0.0:
static double fft5 = 0.0;
static double ffs6 = 0.0, fft6 = 0.0, ffr6 = 0.0;
static double ffs71 = 0.0, ffs72 = 0.0;
static double ffs81 = 0.0, ffs82 = 0.0;
static double fft81 = 0.0, fft82 = 0.0;
static double ffs9 = 0.0, ffds91 = 0.0, ffds92 = 0.0:
static double ffr9 = 0.0, fft91 = 0.0, fft92 = 0.0, ffdt9 = 0.0;
static double ffr10 = 0.0, fft10 = 0.0;
static double ffs111 = 0.0, ffs112 = 0.0, ffs113 = 0.0, ffs114 = 0.0;
static double ffs1211 = 0.0, ffs1212 = 0.0, ffs1213 = 0.0,
                             ffs1221 = 0.0, ffs1222 = 0.0, ffs1223 = 0.0;
static double fft121 = 0.0, fft122 = 0.0;
static double fft131 = 0.0, fft132 = 0.0;
static double ffs131 = 0.0, ffs132 = 0.0;
main()
{
```

```
yy[5], mm[5], site[5];
       char
               ff[100], infile[100], outfile[100];
       char
       struct _find_t c_file;
               build the string ff="v00xmm*.yy"
       //
       printf("enter the year (e.g. 94): ");
       scanf("%s", yy);
       printf("enter the month (e.g. 03): ");
       scanf("%s", mm);
       printf("enter the site (1 or 2): ");
       scanf("%s", site);
       printf("enter the input file: ");
//
       scanf("%s", infile);
//
       sprintf(ff, "v00%s%s*.%s", site, mm, yy);
       printf("enter the output file: ");
       scanf("%s", outfile);
       printf("1: count, 2: weight.: ");
       scanf("%d", &op);
       if (op == OP_WEIGHT) 
               printf("1: flexible pavement, 2: rigid pavement: ");
               scanf("%d", &pave);
               if (pave != 1 && pave != 2) {
                       printf("please enter 1 or 2 for pavement\n");
               }
       printf("terminal serviceability (0.0 - 5.0): ");
        scanf("%lf", &serv);
        if (pave == 1) {
               printf("structural number (1 - 9): ");
        } else {
               printf("slab thinkness (6 - 14): ");
        scanf("%lf", &sn);
        if (pave == 1)
               gt = log10((4.2 - serv) / 2.7);
        else
                gt = log10((4.5 - serv) / 3.0);
   } // end if for weight
        Initialize();
```

```
if (_dos_findfirst(ff, _A_NORMAL, &c_file) != 0) {
     exit(0);
   strcpy(infile, c_file.name);
        if (Calculate(infile, outfile) = 0) {
                exit(0);
        while (\_dos\_findnext(\&c\_file) == 0) {
                strcpy(infile, c_file.name);
                if (Calculate(infile, outfile) = 0) {
                        break;
                }
        if (op = OP_WEIGHT) {
                PrintWeight(ff, outfile);
        return 0;
}
int Calculate(char *infile, char *outfile)
                str[500], *p, *pp, str2[500];
        char
        FILE *f, *fw;
        double data[50];
        int
                        i, type, length, lane;
                count1[20], count2[20], count = 0, sum1 = 0, sum2 = 0, line_no=0;
        f = fopen(infile, "rt");
        fw = fopen("error.txt","wt");
        if (f == NULL) {
                printf("Cannot open input file - %s\n", infile);
               return 0;
        }
        for (i = 0; i < 20; i++)
                count1[i] = count2[i] = 0;
        while (fscanf(f, "%s", str) != EOF) \{ // read line by line from file \}
//
        while (fgets(str, 250, f) != NULL || !feof(f)) {
                                                              //
                                                                      read line by line from file
                strcpy(str2, str);
                if (strlen(str) > 240)
                       goto error;
               line_no++;
               pp = str;
```

```
length = 0;
               while (*pp && length <= 35) { //
                                                              decode data from string
                       p = pp;
                       do {
                              pp++;
                       } while ((*pp != 0) && (*pp != ','));
                       if (*pp == ',') {
                               *pp = 0;
                               pp++;
                       length++;
                       if (length = 1) {
                               lane = atoi(p);
                               if ((lane != 1) & (lane != 2))
                                       break;
                       | = 12  else if (((length = 8)||(length = 9)||(length = 12)||(length = 16)||
\|(\text{length} = 20)\|(\text{length} = 24)\|(\text{length} = 28)) & (*p = '%')) 
                               data[length] = -1;
                               continue;
                       } else {
                               data[length] = atof(p);
                               if (!sscanf(p, "%lf", &(data[length]))) {
                                       length = 0;
                                       break;
                               }
                       }
                type = 14;
                switch (length) {
                case 35:
                case 31:
                       if ((data[length] >= 11.1) && (data[length] <= 24.0))
                               type = 13;
                       else if ((data[length] \geq= 3.4) && (data[length] \leq= 6.0))
                               type = 10;
                       if ((length = 31) && (type = 13))
                               type = 12;
                       break;
                case 27:
                       if ((data[27] \ge 2.5) && (data[27] \le 6.0))
                               type = 9;
                        else if ((data[27] \ge 6.1) & (data[27] \le 40.0)) {
                               if ((data[19] \ge 8.0) && (data[19] \le 50.0))
                                       type = 11;
                               else if ((data[19] \ge 2.5) && (data[19] \le 8.0))
```

```
type = 9;
       break;
case 23:
       if ((data[23] \ge 6.1) && (data[23] \le 40.0))
               type = 8;
       else if ((data[23] \ge 3.4) & (data[23] \le 6.0)) {
               if ((data[19] >= 3.4) && (data[19] <= 4.7))
                       type = 6;
               else if (data[19] >= 5.0) {
                       if ((data[15] >= 6.1 \&\& data[15] <= 20.0))
                               type = 8;
                       else if ((data[15] \ge 0.1) && (data[15] \le 6.0))
                              type = 6;
       \} else if ((data[23] >= 0.1) && (data[23] <= 3.3)) {
               if ((data[15] >= 13.1) && (data[15] <= 20.9))
                       type = 4;
               else if ((data[15] >= 10.3) && (data[15] <= 13.0))
                       type = 2;
               else if ((data[15] \ge 6.1) & (data[15] \le 10.2))
                       type = 1;
       break;
case 19:
       if ((data[19] \ge 20.2) && (data[19] \le 60.0))
               type = 7;
       else if ((data[19] \ge 6.1) && (data[19] \le 20.1)) {
               if ((data[15] >= 13.1) && (data[15] <= 20.9))
                       type = 4;
               else if ((data[15] >= 10.3) && (data[15] <= 13.0))
                       type = 2;
               else if ((data[15] \ge 6.1) && (data[15] \le 10.2))
                      type = 1;
       ext{less if ((data[19] >= 3.4) \&\& (data[19] <= 6.0)) {}}
               if ((data[15] >= 6.1) && (data[15] <= 20.9))
                       type = 5;
               else if ((data[15] \ge 21.0) & (data[15] \le 40.0))
                      type = 3;
       break;
case 15:
       type = ((data[15] >= 13.1) && (data[15] <= 20.9))? 4:
                      ((data[15] \ge 21.0) \&\& (data[15] \le 40.0))? 3:
                      ((data[15] >= 10.3) && (data[15] <= 13.0))? 2:
```

```
((data[15] \ge 0.1) && (data[15] <= 10.2))? 1: 14;
                      break;
                             switch (length)
                      /\!/
              FindWeight(type, length, data);
              if (lane = 1)
                      count1[type]++;
              else if (lane == 2)
                      count2[type]++;
              if (type == 14) {
error:
                      fprintf(fw, "line %ld: %s\n", line_no, str2);
               }
              count++;
              if (!(count % 100))
                      printf("%ld\n", count);
              //
                      while()
       fclose(f);
  fclose(fw);
       if (op = OP_COUNT) {
               f = fopen(outfile, "at");
               if(f == NULL)
                      printf("Cannot open output file - %s\n", outfile);
                      return 0;
               fprintf(f, "Traffic count on %d/%d\n", (int)(data[2]+0.5), (int)(data[3]+0.5));
               fprintf(f, "type lane 1 lane 2\n");
               for (i = 1; i \le 14; i++)
               fprintf(f, " %2d %6ld %6ld\n", i, count1[i], count2[i]);
                      sum1 = sum1 + count1[i];
                      sum2 = sum2 + count2[i];
               fprintf(f, "Total %6ld %6ld\n", sum1, sum2);
               fclose(f);
       return 1;
}
void FindWeight(int type, int length, double * data)
        double tt;
        int td;
        switch (type) {
```

```
case 4:
        if (length == 15) {
                tt = data[13] + data[14];
                td = map1(tt);
                if (td \ge 0) {
                        s41[td]++;
                }
                tt = data[10] + data[11];
                if (tt > 12 \&\& tt \le 20) {
                        td = (int)ceil((tt - 14)/2);
                        e41[td]++;
        } else if (length == 19) {
                tt = data[13] + data[14];
                td = map1(tt);
                if (td >= 0) {
                        s42[td]++;
                tt = data[17] + data[18];
                td = map1(tt);
                if (td \ge 0) {
                        s43[td]++;
                tt = data[10] + data[11];
                if (tt > 12 \&\& tt \le 20) {
                        td = (int)ceil((tt - 14)/2);
                        e42[td]++;
        } else if (length == 23) {
                tt = data[17] + data[18] + data[21] + data[22];
                td = map2(tt);
                if (td >= 0) {
                        t42[td]++;
                tt = data[13] + data[14];
                td = map1(tt);
                if (td >= 0) {
                        s44[td]++;
                tt = data[10] + data[11];
                if (tt > 12 \&\& tt \le 20) {
                        td = (int)ceil((tt - 14)/2);
                        e43[td]++;
                }
        }
```

```
break;
case 5:
       tt = data[13] + data[14] + data[17] + data[18];
        td = map2(tt);
        if (td \ge 0)
                t5[td]++;
        }
        tt = data[10] + data[11];
       if (tt > 12 \&\& tt \le 20) {
                td = (int)ceil((tt - 14)/2);
                e5[td]++;
        break;
case 6:
        if (data[19] > 6) {
                tt = data[17] + data[18] + data[21] + data[22];
                td = map2(tt);
                if (td >= 0) {
                        t6[td]++;
                }
                tt = data[13] + data[14];
                td = map1(tt);
                if (td >= 0) {
                         s6[td]++;
                }
                tt = data[10] + data[11];
                if (tt > 12 \&\& tt \le 20) {
                         td = (int)ceil((tt - 14)/2);
                         e61[td]++;
        } else {
                tt = data[13] + data[14] + data[17] + data[18] + data[21] + data[22];
                td = map3(tt);
                if (td >= 0) {
                         r6[td]++;
                 }
                 tt = data[10] + data[11];
                 if (tt > 12 \&\& tt \le 20) {
                         td = (int)ceil((tt - 14)/2);
                         e62[td]++;
                 }
```

```
break;
case 7:
        tt = data[13] + data[14];
        td = map1(tt);
        if (td >= 0) {
                s71[td]++;
       tt = data[17] + data[18];
       td = map1(tt);
        if (td \ge 0)
                s72[td]++;
        }
       tt = data[10] + data[11];
       if (tt > 12 \&\& tt \le 20) {
                td = (int)ceil((tt - 14)/2);
                e7[td]++;
       break;
case 8:
       if (data[23] \le 6) {
                tt = data[13] + data[14];
                td = map1(tt);
                if (td >= 0) {
                        s81[td]++;
                tt = data[17] + data[18] + data[21] + data[22];
                td = map2(tt);
               if (td \ge 0)
                       t81[td]++;
               tt = data[10]+data[11];
               if (tt > 12 \&\& tt \le 20) {
                       td = (int)ceil((tt - 14)/2);
                       e81[td]++;
       } else {
               tt = data[13] + data[14] + data[17] + data[18];
               td = map2(tt);
               if (td \ge 0)
                       t82[td]++;
               tt = data[21] + data[22];
               td = map1(tt);
               if (td >= 0) {
                       s82[td]++;
               }
```

```
tt = data[10] + data[11];
                if (tt > 12 && tt \leq 20) {
                        td = (int)ceil((tt - 14)/2);
                        e82[td]++;
                }
        break;
case 9:
       if (data[23] \le 6.0) {
                tt = data[13] + data[14];
                td = map1(tt);
                if (td >= 0) {
                        s9[td]++;
                tt = data[17]+data[18]+data[21]+data[22]+data[25]+data[26];
                td = map3(tt);
                if (td \ge 0)
                        r9[td]++;
                tt = data[10] + data[11];
                if (tt > 12 && tt \leq 20) {
                        td = (int)ceil((tt - 14)/2);
                        e91[td]++;
        } else if (data[27] <= 6) {
                tt = data[13] + data[14] + data[17] + data[18];
                td = map2(tt);
                if (td \ge 0) {
                         t91[td]++;
                tt = data[21] + data[22] + data[25] + data[26];
                td = map2(tt);
                if (td >= 0) {
                         t92[td]++;
                tt = data[10] + data[11];
                if (tt > 12 \&\& tt \le 20) {
                         td = (int)ceil((tt - 14)/2);
                         e92[td]++;
         } else {
                 tt = data[13] + data[14] + data[17] + data[18];
                 td = map2(tt);
                 if (td >= 0) {
                         dt9[td]++;
                 }
```

```
tt = data[21] + data[22];
                td = map1(tt);
                if (td \ge 0) {
                        ds91[td]++;
                tt = data[25] + data[26];
                td = map1(tt);
                if (td >= 0) {
                        ds92[td]++;
                tt = data[10] + data[11];
                if (tt > 12 \&\& tt \le 20) {
                        td = (int)ceil((tt - 14)/2);
                        e93[td]++;
                }
        break;
case 10:
        tt = data[21] + data[22] + data[25] + data[26] + data[29] + data[30];
        td = map3(tt);
        if (td \ge 0)
                r10[td]++;
        tt = data[13] + data[14] + data[17] + data[18];
        td = map2(tt);
        if (td \ge 0) {
                t10[td]++;
        tt = data[10] + data[11];
        if (tt > 12 \&\& tt \le 20) {
                td = (int)ceil((tt - 14)/2);
                e10[td]++;
        break;
case 11:
        tt = data[13] + data[14];
        td = map1(tt);
       if (td \ge 0) {
                s111[td]++;
        tt = data[17]+data[18];
        td = map1(tt);
        if (td >= 0) {
                s112[td]++;
        }
```

```
tt = data[21] + data[22];
       td = map1(tt);
       if (td >= 0) {
                s113[td]++;
        tt = data[25] + data[26];
       td = map1(tt);
        if (td >= 0) {
                s114[td]++;
        tt = data[10] + data[11];
        if (tt > 12 \&\& tt \le 20) {
                td = (int)ceil((tt - 14)/2);
                e11[td]++;
        break;
case 12:
        if (data[23] \le 6) {
                tt = data[13] + data[14];
                td = map1(tt);
                if (td >= 0) {
                        s1211[td]++;
                tt = data[17] + data[18] + data[21] + data[22];
                td = map2(tt);
                if (td \ge 0)
                        t121[td]++;
                tt = data[25] + data[26];
                td = map1(tt);
                if (td \ge 0)
                        s1212[td]++;
                tt = data[29] + data[30];
                td = map1(tt);
                if (td \ge 0)
                        s1213[td]++;
                tt = data[10] + data[11];
                if (t > 12 \&\& tt \le 20) {
                        td = (int)ceil((tt - 14)/2);
                        e121[td]++;
         } else {
                tt = data[13] + data[14] + data[17] + data[18];
                 td = map2(tt);
                 if (td \ge 0)
                         t122[td]++;
```

```
tt = data[21] + data[22];
               td = map1(tt);
               if (td >= 0) {
                       s1221[td]++;
               tt = data[25] + data[26];
               td = map1(tt);
               if (td \ge 0)
                       s1222[td]++;
               tt = data[29] + data[30];
               td = map1(tt);
               if (td \ge 0)
                       s1223[td]++;
               tt = data[10] + data[11];
               if (tt > 12 \&\& tt \le 20) {
                       td = (int)ceil((tt - 14)/2);
                       e122[td]++;
               }
       break;
case 13:
       tt = data[17] + data[18] + data[13] + data[14];
       td = map2(tt);
       if (td \ge 0)
               t131[td]++;
       tt = data[21] + data[22] + data[25] + data[26];
       td = map2(tt);
       if (td \ge 0)
               t132[td]++;
       tt = data[29] + data[30];
       td = map1(tt);
       if (td \ge 0)
               s131[td]++;
       tt = data[33]+data[34];
       td = map1(tt);
       if (td \ge 0)
               s132[td]++;
       tt = data[10] + data[11];
       if (tt > 12 \&\& tt \le 20) {
```

```
td = (int)ceil((tt - 14)/2);
                        e13[td]++;
                 }
                break;
        }
}
static int map1(double tt)
        int td = -1;
        if (tt > 0 \&\& tt \le 3) {
                 td = 0;
        } else if (tt > 23) {
                 td = 12;
        } else if (tt > 3 && tt <= 23) {
                 td = (int)ceil(tt-1)/2;
        return td;
}
static int map2(double tt)
         int td = -1;
         if (tt > 0 \&\& tt \le 6) {
                 td = 0;
         } else if (tt > 46) {
                 td = 12;
         } else if (tt > 6 && tt <= 46) {
                 td = (int)ceil((tt - 6)/4);
         return td;
}
static int map3(double tt)
 {
         int td = -1;
         if (tt > 0 \&\& tt \le 6) {
                 td = 0;
         } else if (tt > 66) {
                 td = 17;
         } else if (tt > 6 && tt <= 66) {
                 td = (int)ceil((tt - 6)/4);
         }
```

return td;

```
}
static void Initialize()
        int i;
        for (i=0; i < MAP1; i++) {
                s41[i] = s42[i] = s43[i] = s44[i] = 0;
                s6[i] = s71[i] = s72[i] = s81[i] = s82[i] = 0;
                s9[i] = ds91[i] = ds92[i] = s111[i] = 0;
                s112[i] = s113[i] = s114[i] = s131[i] = s132[i] = 0;
                s1211[i] = s1212[i] = s1213[i] = s1221[i] = s1222[i] = s1223[i] = 0;
        for (i = 0; i < MAP2; i++)
                t42[i] = t5[i] = t6[i] = t81[i] = t82[i] = 0;
               t91[i] = t92[i] = dt9[i] = t10[i] = 0;
               t121[i] = t122[i] = t131[i] = t132[i] = 0;
        for (i = 0; i < MAP3; i++) {
                e41[i] = e42[i] = e43[i] = e5[i] = e61[i] = e62[i] = e7[i] = 0;
               e81[i] = e82[i] = e91[i] = e92[i] = e93[i] = e10[i] = 0;
                e11[i] = e121[i] = e122[i] = e13[i] = 0;
        for (i = 0; i < MAP4; i++) {
               r6[i] = r9[i] = r10[i] = 0;
        beta18 = get\_beta(18, 1);
        wt18 = get_wt(18, 1);
        for (i = 0; i < MAP1; i++)
               factor1[i] = get_factor((double)(i*2+2), 1);
        for (i = 0; i < MAP2; i++) {
               factor2[i] = get_factor((double)(i*4+4), 2);
        for (i = 0; i < MAP4; i++) {
               factor3[i] = get_factor((double)(i*4+4), 3);
        }
}
static void PrintWeight(char *ff, char *outfile)
        FILE *f;
        int
                       i;
```

```
long sum1, sum2, sum3, sum4, sum5, sum6;
double summ1, summ2, summ3, summ4, summ5, summ6;
double ppp1, ppp2, ppp3, ppp4;
f = fopen(outfile, "wt");
if (f == NULL) 
       printf("Cannot open file %s", outfile);
       return;
fprintf(f, "FILE: %s\n", ff);
fprintf(f, "TYPE 4:\n");
sum1 = get\_sum(s41, MAP1, & summ1);
sum2 = get\_sum(s42, MAP1, &summ2);
sum3 = get\_sum(s43, MAP1, &summ3);
sum4 = get\_sum(s44, MAP1, &summ4);
                                                S44\n");
                                     S43
fprintf(f, "
               S41
                          S42
fprintf(f, "weight # of weight # of weight # of weight h");
fprintf(f, "range axles distri. axles distri. axles distri. axles distri. axles distri. axles distri.
for (i=0; i<MAP1; i++) {
       ppp1 = s41[i] / summ1;
       ppp2 = s42[i] / summ2;
       ppp3 = s43[i] / summ3;
       ppp4 = s44[i] / summ4;
       ffs41 += ppp1 * factor1[i];
       ffs42 += ppp2 * factor1[i];
       ffs43 += ppp3 * factor1[i];
       ffs44 += ppp4 * factor1[i];
       s41[i], ppp1 * 100.0, s42[i], ppp2 * 100.0,
       s43[i], ppp3 * 100.0, s44[i], ppp4 * 100.0);
fprintf(f, "total%7ld%16ld%16ld%16ld\n", sum1, sum2, sum3, sum4);
sum1 = get\_sum(t42, MAP2, &summ1);
fprintf(f, "\n
                 T4\n");
fprintf(f, "weight # of weight\n");
fprintf(f, "range axles distri.\n");
for (i=0; i<MAP2; i++) {
       ppp1 = t42[i] / summ1;
       fft42 += ppp1 * factor2[i];
       fprintf(f, "%4d%8ld%8.2lf\n", i*4 + 4, t42[i], ppp1 * 100.0);
 fprintf(f, "total%7ld\n", sum1);
```

```
sum1 = get\_sum(e41, MAP3, &summ1);
sum2 = get\_sum(e42, MAP3, &summ2);
sum3 = get\_sum(e43, MAP3, &summ3);
fprintf(f, "\n
                 E41
                             E42
                                         E43\n"):
fprintf(f, "weight # of weight # of weight hor");
fprintf(f, "range axles distri. axles distri. axles distri.\n");
for (i=0; i<MAP3; i++) {
       ppp1 = e41[i] / summ1;
       ppp2 = e42[i] / summ2;
       ppp3 = e43[i] / summ3;
       fprintf(f, "%4d%8ld%8.2lf%8ld%8.2lf%8ld%8.2lf\n",
       i*2 + 13, e41[i], ppp1 * 100.0,
       e42[i], ppp2 * 100.0, e43[i], ppp3 * 100.0);
fprintf(f, "total%7ld%16ld%16ld\n", sum1, sum2, sum3);
// type 5
fprintf(f, "\nTYPE 5:\n");
sum1 = get\_sum(t5, MAP2, & summ1);
fprintf(f, "
                T5\n");
fprintf(f, "weight # of weight\n");
fprintf(f, "range axles distri.\n");
for (i=0; i<MAP2; i++) {
       ppp1 = t5[i] / summ1;
       fft5 += ppp1 * factor2[i];
       fprintf(f, "%4d\%8ld\%8.2lf\n", i*4 + 4, t5[i], ppp1 * 100.0);
fprintf(f, "total%7ld\n", sum1);
sum1 = get\_sum(e5, MAP3, &summ1);
fprintf(f, "\n
                  E5\n");
fprintf(f, "weight # of weight\n");
fprintf(f, "range axles distri.\n");
for (i=0; i<MAP3; i++) {
       fprintf(f, "%4d\%8ld\%8.2lf\n", i*2 + 13, e5[i], e5[i]/summ1);
fprintf(f, "total%7ld\n", sum1);
// type 6
fprintf(f, "\nTYPE 6:\n");
sum1 = get\_sum(s6, MAP1, &summ1);
fprintf(f, "
                S6\n");
fprintf(f, "weight # of weight\n");
fprintf(f, "range axles distri.\n");
for (i=0; i<MAP1; i++) {
```

```
ppp1 = s6[i]/summ1;
             ffs6 += ppp1 * factor1[i];
             fprintf(f, "%4d%8ld%8.2lf\n", i*2 + 2, s6[i], ppp1 * 100.0);
      fprintf(f, "total%7ld\n", sum1);
      sum1 = get\_sum(t6, MAP2, &summ1);
      fprintf(f, "\n
                         T6\n'');
      fprintf(f, "weight # of weight\n");
      fprintf(f, "range axles distri.\n");
      for (i=0; i<MAP2; i++) {
             ppp1 = t6[i]/summ1;
              fft6 += ppp1 * factor2[i];
              fprintf(f, "%4d%8ld%8.2lf\n", i*4 + 4, t6[i], ppp1 * 100.0);
      fprintf(f, "total%7ld\n", sum1);
      sum1 = get\_sum(e61, MAP3, & summ1);
      sum2 = get\_sum(e62, MAP3, &summ2);
      fprintf(f, "\n
                        E61
                                    E62\n");
      fprintf(f, "weight # of weight # of weight\n");
      fprintf(f, "range axles distri. axles distri.\n");
      for (i=0; i<MAP3; i++) {
              fprintf(f, "%4d%8ld%8.21f%8ld%8.21f\n", i*2 + 13,
              e61[i], e61[i]/summ1, e62[i], e62[i]/summ2);
       fprintf(f, "total%7ld%16ld\n", sum1, sum2);
       sum1 = get\_sum(r6, MAP4, &summ1);
                         R6\n");
       fprintf(f, "\n
       fprintf(f, "weight # of weight\n");
       fprintf(f, "range axles distri.\n");
       for (i=0; i<MAP4; i++) {
              ppp1 = r6[i]/summ1;
              ffr6 += ppp1 * factor3[i];
              fprintf(\bar{f}, "\%4d\%8ld\%8.2lf\n", i*4 + 4, r6[i], ppp1 * 100.0);
       fprintf(f, "total%7ld\n", sum1);
// type 7
       fprintf(f, "\nTYPE 7:\n");
       sum1 = get\_sum(s71, MAP1, &summ1);
       sum2 = get_sum(s72, MAP1, &summ2);
                                   S72\n");
       fprintf(f, "
                       S71
       fprintf(f, "weight # of weight weight ");
```

```
fprintf(f, "range axles distri. axles distri.\n");
       for (i=0; i<MAP1; i++) {
               ppp1 = s71[i]/summ1;
               ppp2 = s72[i]/summ2;
               ffs71 += ppp1 * factor1[i];
               ffs72 += ppp2 * factor1[i];
               fprintf(f, "4d\%81d\%8.21f\%81d\%8.21f\n", i*2 + 2,
               s71[i], ppp1 * 100.0, s72[i], ppp2 * 100.0);
       fprintf(f, "total%7ld%16ld\n", sum1, sum2);
       sum1 = get\_sum(e7, MAP3, & summ1);
       fprintf(f, "\n
                         E7\n");
       fprintf(f, "weight # of weight\n");
       fprintf(f, "range axles distri.\n");
       for (i=0; i<MAP3; i++) {
               fprintf(f, "%4d\%8ld\%8.2lf\n", i*2 + 13, e7[i], e7[i]/summ1);
       fprintf(f, "total%7ld\n", sum1);
// type 8
       fprintf(f, "\nTYPE 8:\n");
       sum1 = get\_sum(s81, MAP1, & summ1);
       sum2 = get\_sum(s82, MAP1, &summ2);
       fprintf(f, "
                       S81
                                   S82\n");
       fprintf(f, "weight # of weight # of weight\n");
       fprintf(f, "range axles distri. axles distri.\n");
       for (i=0; i<MAP1; i++) {
               ppp1 = s81[i] / summ1;
               ppp2 = s82[i] / summ2;
               ffs81 += ppp1 * factor1[i];
               ffs82 += ppp2 * factor1[i];
               fprintf(f, "%4d\%8ld\%8.2lf\%8ld\%8.2lf\n", i*2 + 2,
               s81[i], ppp1 * 100.0, s82[i], ppp2 * 100.0);
       fprintf(f, "total%7ld%16ld\n", sum1, sum2);
       sum1 = get\_sum(t81, MAP2, & summ1);
       sum2 = get\_sum(t82, MAP2, &summ2);
       fprintf(f, "\n
                         T81
                                     T82\n");
       fprintf(f, "weight # of weight # of weight\n");
       fprintf(f, "range axles distri. axles distri.\n");
       for (i=0; i<MAP2; i++) {
              ppp1 = t81[i]/summ1;
              ppp2 = t82[i]/summ2;
```

```
fft81 += ppp1 * factor2[i];
             fft82 += ppp2 * factor2[i];
             fprintf(f, "%4d%8ld%8.2lf\8ld%8.2lf\n", i*4 + 4,
             t81[i], ppp1 * 100.0, t82[i], ppp2 * 100.0);
      fprintf(f, "total%7ld%16ld\n", sum1, sum2);
      sum1 = get\_sum(e81, MAP3, &summ1);
      sum2 = get\_sum(e82, MAP3, &summ2);
      fprintf(f, "\n
                       E81
                                   E82\n");
      fprintf(f, "weight # of weight # of weight\n");
      fprintf(f, "range axles distri. axles distri.\n");
      for (i=0; i<MAP3; i++) {
             fprintf(f, "%4d%8ld%8.21f%8ld%8.21f\n", i*2 + 13,
             e81[i], e81[i] / summ1, e82[i], e82[i] / summ2);
      fprintf(f, "total%7ld%16ld\n", sum1, sum2);
// type 9
      fprintf(f, "\nTYPE 9:\n");
      sum1 = get\_sum(s9, MAP1, &summ1);
      sum2 = get\_sum(ds92, MAP1, &summ2);
       sum3 = get\_sum(ds92, MAP1, &summ3);
      fprintf(f, "
                                            DS92\n");
                      S9
                                DS91
      fprintf(f, "weight # of weight # of weight\n");
      fprintf(f, "range axles distri. axles distri. axles distri.\n");
       for (i=0; i<MAP1; i++) {
              ppp1 = s9[i] / summ1;
              ppp2 = ds91[i] / summ2;
              ppp3 = ds92[i] / summ3;
              ffs9 += ppp1 * factor1[i];
              ffds91 += ppp2 * factor1[i];
              ffds92 += ppp3 * factor1[i];
              fprintf(f, "%4d%8ld%8.21f%8ld%8.21f%8ld%8.21f\n", i*2 + 2,
              s9[i], ppp1 * 100.0, ds91[i], ppp2 * 100.0, ds92[i], ppp3 * 100.0);
       fprintf(f, "total%7ld%16ld%16ld\n", sum1, sum2, sum3);
       sum1 = get\_sum(t91, MAP2, &summ1);
       sum2 = get\_sum(t92, MAP2, &summ2);
       sum3 = get_sum(dt9, MAP2, &summ3);
       fprintf(f, "\n
                                               DT9\n");
                                   T92
                        T91
       fprintf(f, "weight # of weight # of weight\n");
       fprintf(f, "range axles distri. axles distri. axles distri.\n");
       for (i=0; i<MAP2; i++) {
```

```
ppp1 = t91[i] / summ1;
              ppp2 = t92[i] / summ2;
              ppp3 = dt9[i] / summ3;
              fft91 += ppp1 * factor2[i];
              fft92 += ppp2 * factor2[i];
              ffdt9 += ppp3 * factor2[i];
              fprintf(f, "%4d%8ld%8.2lf%8ld%8.2lf%8ld%8.2lf\n", i*4 + 4,
              t91[i], ppp1 * 100.0, t92[i], ppp2 * 100.0, dt9[i], ppp3 * 100.0);
       fprintf(f, "total%7ld%16ld%16ld\n", sum1, sum2, sum3);
       sum1 = get\_sum(e91, MAP3, &summ1);
       sum2 = get\_sum(e92, MAP3, &summ2);
       sum3 = get\_sum(e93, MAP3, &summ3);
       fprintf(f, "\n
                        E91
                                    E92
                                                E93\n");
       fprintf(f, "weight # of weight # of weight ho");
       fprintf(f, "range axles distri. axles distri. axles distri.\n");
       for (i=0; i<MAP3; i++) {
              fprintf(f, "%4d%81d%8.21f%81d%8.21f\n", i*2 + 13,
              e91[i], e91[i] / summ1, e92[i], e92[i] / summ2,
              e93[i], e93[i] / summ3);
       fprintf(f, "total%7ld%16ld%16ld\n", sum1, sum2, sum3);
       sum1 = get\_sum(r9, MAP4, & summ1);
       fprintf(f, "\n
                         R9\n");
       fprintf(f, "weight # of weight\n");
       fprintf(f, "range axles distri.\n");
       for (i=0; i<MAP4; i++) {
              ppp1 = r9[i] / summ1;
              ffr9 += ppp1 * factor3[i];
              fprintf(f, "%4d%8ld%8.2lf\n", i*4 + 4, r9[i], ppp1 * 100.0);
       fprintf(f, "total%7ld\n", sum1);
// type 10
       fprintf(f, "\nTYPE 10:\n");
       sum1 = get\_sum(t10, MAP2, &summ1);
       fprintf(f, "
                      T10\n");
       fprintf(f, "weight # of weight\n");
       fprintf(f, "range axles distri.\n");
       for (i=0; i<MAP2; i++) {
              ppp1 = t10[i] / summ1;
              fft10 += ppp1 * factor1[i];
              fprintf(f, "%4d\%8ld\%8.2lf\n", i*4 + 4, t10[i], ppp1 * 100.0);
```

```
fprintf(f, "total%7ld\n", sum1);
       sum1 = get\_sum(e10, MAP3, &summ1);
       fprintf(f, "\n
                        E10\n");
       fprintf(f, "weight # of weight\n");
       fprintf(f, "range axles distri.\n");
       for (i=0; i<MAP3; i++) {
              fprintf(f, "%4d%8ld%8.2lf\n", i*2 + 13, e10[i], e10[i] / summ1);
       fprintf(f, "total%7ld\n", sum1);
       sum1 = get\_sum(r10, MAP4, &summ1);
                        R10\n");
       fprintf(f, "\n
       fprintf(f, "weight # of weight\n");
       fprintf(f, "range axles distri.\n");
       for (i=0; i<MAP4; i++) {
              ppp1 = r10[i] / summ1;
              ffr10 += ppp1 * factor3[i];
              fprintf(f, "%4d%8ld%8.2lf\n", i*4 + 4, r10[i], ppp1 * 100.0);
       fprintf(f, "total%7ld\n", sum1);
// type 11
       fprintf(f, "\nTYPE 11:\n");
       sum1 = get\_sum(s111, MAP1, &summ1);
       sum2 = get\_sum(s112, MAP1, &summ2);
       sum3 = get\_sum(s113, MAP1, &summ3);
       sum4 = get_sum(s114, MAP1, &summ4);
                                                           S114\n");
                                   S112
                                               S113
       fprintf(f, "
                      S111
       fprintf(f, "weight # of weight # of weight # of weight hor");
       fprintf(f, "range axles distri. axles distri. axles distri. axles distri. axles distri. axles distri.
       for (i=0; i<MAP1; i++) {
              ppp1 = s111[i] / summ1;
              ppp2 = s112[i] / summ2;
              ppp3 = s113[i] / summ3;
               ppp4 = s114[i] / summ4;
               ffs111 += ppp1 * factor1[i];
               ffs112 += ppp2 * factor1[i];
               ffs113 += ppp3 * factor1[i];
               ffs114 += ppp4 * factor1[i];
               fprintf(f, "%4d%8ld%8.2lf%8ld%8.2lf%8ld%8.2lf\n",
               i*2 + 2, s111[i], ppp1 * 100.0, s112[i], ppp2 * 100.0,
               s113[i], ppp3 * 100.0, s114[i], ppp4 * 100.0);
        }
```

```
fprintf(f, "total%7ld%16ld%16ld%16ld\n", sum1, sum2, sum3, sum4);
       sum1 = get\_sum(e11, MAP3, & summ1);
       fprintf(f, "\n
                        E11\n");
       fprintf(f, "weight # of weight\n");
       fprintf(f, "range axles distri.\n");
       for (i=0; i<MAP3; i++) {
              fprintf(f, "%4d%8ld%8.2lf\n", i*2 + 13, e11[i], e11[i]/summ1);
       fprintf(f, "total%7ld\n", sum1):
// type 12
       fprintf(f, "\nTYPE 12:\n");
       sum1 = get\_sum(s1211, MAP1, & summ1);
       sum2 = get\_sum(s1212, MAP1, &summ2);
       sum3 = get\_sum(s1213, MAP1, &summ3);
       sum4 = get\_sum(s1221, MAP1, &summ4);
       sum5 = get\_sum(s1222, MAP1, & summ5);
       sum6 = get\_sum(s1223, MAP1, &summ6):
       fprintf(f, "
                     S1211
                                 S1212
                                              S1213\n");
       fprintf(f, "weight # of weight # of weight\n");
       fprintf(f, "range axles distri. axles distri. axles distri.\n");
       for (i=0; i<MAP1; i++) {
              ppp1 = s1211[i] / summ1;
              ppp2 = s1212[i] / summ2;
              ppp3 = s1213[i] / summ3;
              ffs1211 += ppp1 * factor1[i];
              ffs1212 += ppp2 * factor1[i];
              ffs1213 += ppp3 * factor1[i];
              fprintf(f, "%4d%8ld%8.2lf%8ld%8.2lf%8ld%8.2lf\n",
              i*2 + 2, s1211[i], ppp1 * 100.0, s1212[i], ppp2 * 100.0,
              s1213[i], ppp3 * 100.0);
       fprintf(f, "total%7ld%16ld%16ld\n", sum1, sum2, sum3);
       fprintf(f, "\n
                      S1221
                                   S1222
                                                S1223\n");
       fprintf(f, "weight # of weight # of weight h");
       fprintf(f, "range axles distri. axles distri. axles distri.\n");
       for (i=0; i<MAP1; i++) {
              ppp1 = s1221[i] / summ4;
              ppp2 = s1222[i] / summ5;
              ppp3 = s1223[i] / summ6;
              ffs1221 += ppp1 * factor1[i];
              ffs1222 += ppp2 * factor1[i];
              ffs1223 += ppp3 * factor1[i];
```

```
fprintf(f, "%4d%81d%8.21f%81d%8.21f%81d%8.21f\n",
             i*2 + 2, s1221[i], ppp1 * 100.0,
             s1222[i], ppp2 * 100.0, s1223[i], ppp3 * 100.0);
      fprintf(f, "total%7ld%16ld%16ld\n", sum4, sum5, sum6);
      sum1 = get\_sum(t121, MAP2, &summ1);
      sum2 = get\_sum(t122, MAP2, &summ2);
      fprintf(f, "\n
                       T121
                                   T122\n'');
      fprintf(f, "weight # of weight \n");
      fprintf(f, "range axles distri. axles distri.\n");
      for (i=0; i<MAP2; i++) {
             ppp1 = t121[i]/summ1;
             ppp2 = t122[i]/summ2;
             fft121 += ppp1 * factor2[i];
             fft122 += ppp2 * factor2[i];
             fprintf(f, "%4d%8ld%8.21f\8ld%8.21f\n", i*4 + 4,
             t121[i], ppp1 * 100.0, t122[i], ppp2 * 100.0);
      fprintf(f, "total%7ld%16ld\n", sum1, sum2);
       sum1 = get\_sum(e121, MAP3, & summ1);
       sum2 = get\_sum(e122, MAP3, &summ2);
                                   E122\n");
                       E121
       fprintf(f, "\n
       fprintf(f, "weight # of weight hof weight ho");
       fprintf(f, "range axles distri. axles distri.\n");
       for (i=0; i<MAP3; i++) {
              fprintf(f, "%4d%8ld%8.2lf%8ld%8.2lf\n", i*2 + 13,
              e121[i], e121[i]/summ1, e122[i], e122[i]/summ2);
       fprintf(f, "total%7ld%16ld\n", sum1, sum2);
// type 13
       fprintf(f, "\nTYPE 13:\n");
       sum1 = get\_sum(s131, MAP1, &summ1);
       sum2 = get\_sum(s132, MAP1, &summ2);
       fprintf(f, "
                     S131
                                 S132\n");
       fprintf(f, "weight # of weight\n");
       fprintf(f, "range axles distri. axles distri. \n");
       for (i=0; i<MAP1; i++) {
              ppp1 = s131[i] / summ1;
              ppp2 = s132[i] / summ2;
              ffs131 += ppp1 * factor1[i];
              ffs132 += ppp2 * factor1[i];
              fprintf(f, "%4d\%8ld\%8.2lf\%8ld\%8.2lf\n", i*2 + 2,
```

```
s131[i], ppp1 * 100.0, s132[i], ppp2 * 100.0);
fprintf(f, "total%7ld%16ld\n", sum1, sum2);
sum1 = get\_sum(t131, MAP2, & summ1);
sum2 = get\_sum(t132, MAP2, &summ2);
fprintf(f, "\n
                T131
                             T132\n'');
fprintf(f, "weight # of weight # of weight\n");
fprintf(f, "range axles distri. axles distri.\n");
for (i=0; i<MAP2; i++) {
       ppp1 = t131[i]/summ1;
       ppp2 = t132[i]/summ2;
       fft131 += ppp1 * factor2[i];
       fft132 += ppp2 * factor2[i];
       fprintf(f, "%4d\%8ld\%8.2lf\%8ld\%8.2lf\n", i*4 + 4,
       t131[i], ppp1 * 100.0, t132[i], ppp2 * 100.0);
fprintf(f, "total%7ld%16ld\n", sum1, sum2);
sum1 = get\_sum(e13, MAP3, &summ1);
fprintf(f, "\n
                 E13\n");
fprintf(f, "weight # of weight\n");
fprintf(f, "range axles distri.\n");
for (i=0; i<MAP3; i++) {
       fprintf(f, "%4d\%81d\%8.21f\n", i*2 + 13, e13[i], e13[i]/summ1);
fprintf(f, "total%7ld\n", sum1);
/* ouyput ff... */
fprintf(f, "\n----\n");
fprintf(f, "\nType 4\n");
fprintf(f, "2D: %lf\n", ffs41);
fprintf(f, "2D-1: %lf\n", ffs42 + ffs43);
fprintf(f, "2D-2: %lf\n", ffs44 + fft42);
fprintf(f, "\nType 5\n");
fprintf(f, "3A : \%lf\n", fft5);
fprintf(f, "\nType 6\n");
fprintf(f, "4A: %lf\n", ffr6);
fprintf(f, "Rig: %lf\n", ffs6 + fft6);
fprintf(f, "\nType 7\n");
fprintf(f, "2S1 : %lf\n", ffs71 + ffs72);
```

```
fprintf(f, "\nType 8\n");
       fprintf(f, "2S2: %lf\n", ffs81 + fft81);
       fprintf(f, "3S1: %lf\n", fft82 + ffs82);
       fprintf(f, "\nType 9\n");
       fprintf(f, "2S3: %lf\n", ffs9 + ffr9);
       fprintf(f, "3S3: %lf\n", fft91 + fft92);
       fprintf(f, " 3S2 : %lf\n", ffdt9 + ffds91 + ffds92);
       fprintf(f, "\nType 10\n");
       fprintf(f, "3S3: %lf\n", fft10 + ffr10);
       fprintf(f, "\nType 11\n");
       fprintf(f, "2S1-2: %lf\n", ffs111 + ffs112 + ffs113 + ffs114);
       fprintf(f, "\nType 12\n");
       fprintf(f, "2S2-2:%lf\n", ffs1211 + fft121 + ffs1212 + ffs1213);
       fprintf(f, "3S1-2: %lf\n", ffs1221 + fft122 + ffs1222 + ffs1223);
       fprintf(f, "\nType 13\n");
       fprintf(f, "3S2-2: %lf\n", fft131 + fft132 + ffs131 + ffs132);
       fclose(f);
}
static long get_sum(long *tt, int num, double *ss)
       int i;
       long sum = 0;
       for (i=0; i<num; i++) {
               sum += tt[i];
        if (sum = 0)
               *_{SS} = 1.0;
        else
                *ss = (double)sum;
        return sum;
}
static double get_beta(double L1, double L2)
        double beta;
        if (pave == 1) {
```

```
beta = 0.40 + (0.081 * pow(L1 + L2, 3.23)) /
               pow(sn + 1.0, 5.19) / pow(L2, 3.23);
        } else {
               beta = 1.0 + (3.63 * pow(L1 + L2, 5.2)) /
               (pow(sn + 1.0, 8.46) * pow(L2, 3.52));
       return beta;
}
static double get_wt(double L1, double L2)
        double wt:
        double beta = get_beta(L1, L2);
       if (pave == 1) {
               wt = 5.93 + 9.36 * log10(sn + 1.0) - 4.79 * log10(L1 + L2) +
                       4.331 * log10(L2) + gt / beta;
        } else {
               wt = 5.85 + 7.35 * log10(sn + 1.0) - 4.62 * log10(L1 + L2) +
                       3.28 * log10(L2) + gt / beta;
       wt = pow(10, wt);
       return wt;
}
static double get_factor(double L1, double L2)
       double beta = get_beta(L1, L2);
       double t1;
       double t2;
       double wt = get_wt(L1, L2);
       if (pave = 1) {
              t1 = pow(L1 + L2, 4.79) / pow(19.0, 4.79);
              t2 = pow(10.0, gt / beta 18) / pow(10.0, gt / beta) / pow(L2, 4.331);
       } else {
              t1 = pow(L1 + L2, 4.62) / pow(19.0, 4.62);
              t2 = pow(10.0, gt / beta18) / pow(10.0, gt / beta) / pow(L2, 3.28);
/*
       wt = t1 * t2; */
       t1 *= t2;
       wt = wt18 / wt;
       wt *= t1; */
       return t1;
}
```

A.2 ESAL PROGRAM COMPUTER PROGRAM FOR FORECASTING FUTURE TRAFFIC LOADS

```
#INCLUDE <STDIO.H>
#INCLUDE <STDLIB.H>
#INCLUDE <STRING.H>
#INCLUDE < DOS.H>
#INCLUDE <MATH.H>
#DEFINE MIN_TYPE 4
#DEFINE MAX_TYPE 13
STATIC DOUBLE FFF[]={0.0, 0.0, 0.0, 0.0, 0.031, 0.178, 0.297, 0.277,
                                   0.261, 0.567, 0.851, 1.521, 0.615, 0.745;
MAIN()
                 I, N, GR;
      INT
      LONG CURR_TRAF[15];
      DOUBLE
                 G[15];
                 FACTOR[15];
      DOUBLE
      DOUBLE
                 FF;
      LONG DESIGN_TRAF, DESIGN_ESAL;
      LONG SUM1, SUM2, SUM3;
      CHAR FILENAME[100];
      FILE *F;
      PRINTF("ANALYSIS PERIOD (YEAR): ");
      SCANF("%D", &N);
      printf("1: simple growth rate, 2: compound growth rate. :");
      SCANF("%D", &GR);
      FOR (I = MIN\_TYPE; I \le MAX\_TYPE; I++) \{
            PRINTF("CURRENT TRAFFIC PER DAY OF TYPE %D: ", I);
            SCANF("%LD", &CURR_TRAF[I]);
            PRINTF("ANNUAL GROWTH RATE OF TYPE %D (E.G. 0.05): ", I);
            SCANF("%LF", &G[I]);
            PRINTF("E.S.A.L. FACTOR PER VEHICLE OF TYPE %D (0 FOR
DEFAULT VALUE %.3LF): ", I, FFF[I]);
            SCANF("%LF", &FACTOR[I]);
            IF (FACTOR[I] == 0.0)
                  FACTOR[I] = FFF[I];
      PRINTF("OUTPUT FILENAME: ");
      SCANF("%S", FILENAME);
      IF ((F = FOPEN(FILENAME, "WT")) == NULL) {
            PRINTF("CANNOT OPEN FILE %S\N", FILENAME);
            RETURN 0;
      }
```

```
DO {
           PRINTF("\N\N");
            PRINTF("TRUCK CURRENT GROWTH E.S.A.L.\N");
            PRINTF(" TYPE TRAFFIC RATE
                                             FACTOR\N");
           PRINTF("-----\N");
           FOR (I = MIN\_TYPE; I \le MAX\_TYPE; I++) {
                 PRINTF("%4D%9LD%10.2LF%12.4LF\N",
                 I, CURR_TRAF[I], G[I], FACTOR[I]);
           PRINTF("-----\N\N");
           PRINTF("ENTER TRUCK TYPE TO BE MODIFIED (O FOR EXIT): ");
           SCANF("%D", &I);
           IF (I < MIN_TYPE || I > MAX_TYPE)
                 BREAK:
           PRINTF("CURRENT TRAFFIC PER DAY OF TYPE %D: ", I);
           SCANF("%LD", &CURR_TRAF[I]);
           PRINTF("ANNUAL GROWTH RATE OF TYPE %D: ", I);
           SCANF("%LF", &G[I]);;
           PRINTF("E.S.A.L. FACTOR PER VEHICLE OF TYPE %D: ", I):
           SCANF("%LF", &FACTOR[I]);
           IF (FACTOR[I] = 0.0)
                 FACTOR[I] = FFF[I];
      \} WHILE (I != 0);
     SUM1 = SUM2 = SUM3 = 0;
     FPRINTF(F, "TRUCK CURRENT GROWTH DESIGN
                                                       E.S.A.L.
DESIGN\N");
     FPRINTF(F, "TYPES TRAFFIC RATE
                                          TRAFFIC FACTOR
E.S.A.L.\N");
                  (AADT)
     FPRINTF(F, "
                                 (CUMULATION) (/VEH.)\N");
     FPRINTF(F, "-----
     FOR (I = MIN\_TYPE; I \le MAX\_TYPE; I \leftrightarrow) 
           IF (G[I] = 0.0) {
                 FF = (DOUBLE)N;
           \} ELSE IF (GR \Longrightarrow 1) {
                 FF = (DOUBLE)N + (DOUBLE)N*(DOUBLE)(N-1)*G[I] / 2.0;
           } ELSE {
                 FF = (POW(1.0 + G[I], (DOUBLE)N) - 1) / G[I];
           DESIGN_TRAF = (LONG)(CURR_TRAF[I] * FF) * 365;
           DESIGN_ESAL = (LONG)(DESIGN_TRAF * FACTOR[I]);
           SUM1 += CURR_TRAF[I];
           SUM2 += DESIGN_TRAF;
           SUM3 += DESIGN_ESAL;
```

APPENDIX B:

SOUTH SITE TRAFFIC COUNT FOR 1995

(N/A = Information not available)

TRAFFIC VOLUME OF JANUARY 1995, SOUTH SITE

TOTAL	7320	8418	8959	6229	6125	6543	8609	9329	6234	0809	6293	6637	7376	6585	80/9	7050	5823	5531	6285	7339	9603	0269	5833	909 <u>;</u>	2898	6009	7307	6134	6502	6172	5793
TYPE 14	14	22	56	16	25	25	13	28	27	56	33	35	18	19	70	25	19	23	20	32	18	15	74	18	22	34	36	14	56	20	30
TYPE 13	0	0	_	0	-	0	_	-	-	1	ю	_	0		0	0	0	0	0	1	0	0	-		-	_	_	-	0	-	0
TYPE 12	ю	က	9	10	13	7	7	Э	7	∞	7	∞	∞	10	_	11	7	11	13	12	6	7	6	10	10	19	12	10	4	10	10
TYPE 11	23	28	49	52	64	46	48	70	46	24	22	70	9	52	34	46	54	70	71	61	57	38	38	22	22	89	27	27	33	28	9
TYPE 10	0	7	11	12	14	16	16	7	19	14	31	31	22	7	11	17	21	10	18	13	10	5	17	19	13	10	11	5	∞	16	12
TYPE 9	289	807	1236	1296	1409	1141	527	208	1422	1395	1425	1467	1169	267	692	1389	1298	1383	1493	1205	542	718	1326	1299	1398	1433	1137	513	206	1335	1271
TYPE 8	65	83	86	68	104	66	53	54	86	94	66	126	79	98	63	102	88	96	100	94	20	28	79	11	84	103	86	79	<i>L</i> 9	78	86
TYPE 7	23	38	32	27	23	31	24	18	29	32	28	47	31	27	56	36	28	34	35	27	21	27	27	27	31	21	34	27	32	30	34
TYPE 6	0	0	0	4	0	2	0	0	0	1	0		-	0	0	2	_	1	1	0	0	0	-	_	-	_	0	0	0	0	7
TYPE 5	6	55	48	55	61	4	40	28	59	19	99	4	59	35	25	20	52	54	53	55	48	29	89	65	63	99	51	37	16	58	80
TYPE 4	487	586	440	462	422	498	448	424	455	424	485	513	539	487	465	504	432	394	420	542	427	200	428	430	443	398	642	486	528	496	426
TYPE 3	12	14	38	30	25	35	14	16	32	56	33	37	32	15	12	70	32	28	25	30	16	20	33	23	33	26	35	18	12	33	33
TYPE 2	2414	2523	1886	1718	1609	1826	1873	1801	1677	1611	1615	1721	2076	2094	2038	1864	1515	1443	1624	2003	1841	2099	1565	1489	1578	1589	2017	1880	1957	1720	1582
TYPEI	3981	42.52	2697	2458	2355	2773	3034	3248	2362	2333	2413	2516	3282	3185	3321	2984	2276	1984	2412	3264	2997	3459	2217	2092	2166	2250	3176	3007	3113	2327	2150
WEEK	7.	MON	TUE	WED	THI	FRI	SAT	SUN	MOM	TUE	WED	THU	FRI	SAT	NOS	MOM	TUE	WED	THI	FRI	SAT	SUN	MOM	TUE	WED	THI	FRI	SAT	NIIS	NOM	TUE
DATE	1-TAN	VIAN 7-1	3-IAN	4-IAN	S-IAN	NAI-9	7-JAN	8-JAN	9-JAN	10-JAN	11-JAN	12-JAN	13-JAN	14-JAN	15-IAN	16-IAN	17-IAN	18-JAN	19-IAN	20-IAN	21-JAN	22-JAN	23-JAN	24-JAN	25-JAN	26-JAN	27-IAN	28-IAN	29-IAN	30-IAN	31-JAN

TRAFFIC VOLUME OF FEBUARY 1995, SOUTH SITE

TOTAL	6072	6402	7811	6649	8234	6318	5813	8209	6532	8137	6261	7201	5935	5671	5931	8699	8251	6497	7674	7486	6533	6263	6899	8490	6624	7751	6312	5963
TYPE 14	23	27	36	17	28	25	27	21	24	29	14	23	21	32	24	28	48	20	35	29	32	21	20	42	21	32	35	31
TYPE 13	_	0	0	0	7	1	_	1	0	0	0	1	-	0	0	0	0	0	1	0	0	0	0	0	0		7	0
TYPE 12	16	6	10	9	9	5	7	13	∞	13	S	5	7	9	14	13	12	∞	2	11	11	12	11	20	7	9	7	14
TYPE 11	65	78	70	51	37	51	51	19	69	57	09	40	59	52	49	70	63	46	38	54	49	57	4	<i>L</i> 9	53	33	69	63
TYPE 10	20	19	12	11	9	13	24	17	21	22	9	9	22	16	20	15	14	9	9	11	12	28	28	17	6	4	18	12
TYPE 9	1442	1436	1192	505	734	1348	1301	1459	1524	1289	695	720	1314	1286	1356	1453	1143	573	694	1396	1373	1563	1576	1288	979	800	1450	1300
TYPE 8	96	26	96	96	109	68	68	98	104	109	99	9/	88	85	101	100	92	72	80	111	66	107	125	105	9/	9/	93	86
TYPE 7	29	32	32	37	20	35	56	31	35	30	34	30	22	16	31	36	38	24	40	51	24	30	23	37	39	48	40	56
TYPE 6	-	4	7	0	0	0	0	0	0	7	1	0	0	0	0	0	0	0	0	0	0	_	-	0	0	0	0	0
TYPE 5	72	66	95	47	33	9/	11	59	81	55	37	18	70	92	70	80	91	54	20	<i>L</i> 9	82	73	82	70	49	32	52	09
TYPE 4	452	4 4 4	644	485	689	207	477	456	505	674	491	524	441	453	451	534	712	479	009	536	451	491	513	752	532	640	478	532
TYPE 3	38	31	34	15	25	30	34	34	59	37	20	13	21	39	26	36	45	23	13	35	43	56	46	49	78	27	35	38
TYPE 2	1598	1714	2149	2056	2429	1762	1610	1560	1730	2178	1904	2066	1608	1509	1569	1776	2225	1991	2294	2033	1806	1576	1722	2243	1986	2336	1674	1636
TYPEI	2219	2412	3440	3323	4086	2376	2089	2260	2402	3642	3064	3679	2261	2113	2205	2557	3768	3201	3848	3153	2536	2278	2475	3800	3198	3716	2359	2153
WEEK	WED	THU	FRI	SAT	SUN	MON	TUE	WED	THU	FRI	SAT	SUN	MON	TUE	WED	THU	FRI	SAT	SUN	MON	TUE	WED	THU	FRI	SAT	SUN	MON	TUE
DATE	1-FEB	2-FEB	3-FEB	4-FEB	5-FEB	6-FEB	7-FEB	8-FEB	9-FEB	10-FEB	11-FEB	12-FEB	13-FEB	14-FEB	15-FEB	16-FEB	17-FEB	18-FEB	19-FEB	20-FEB	21-FEB	22-FEB	23-FEB	24-FEB	25-FEB	26-FEB	27-FEB	28-FEB

TRAFFIC VOLUME OF MARCH 1995, SOUTH SITE

TOTAL	6164	9/99	7844	6469	7392	6406	5496	6169	6948	9238	8018	8535	6230	6391	7139	7654	8501	8102	10148	6864	6889	6229	7092	8294	7406	8992	2659	6075	6085	6710	7756
TYPE 14	29	30	25	12	22	17	16	16	35	37	20	30	28	29	70	25	28	28	40	25	28	22	27	30	24	43	4	51	22	30	30
TYPE 13	0	0	0	0	0	0	0	0	7	_		7	0	_	0	0	0	0	0	0	1	0	_	0	0	0	0	3	0	0	
TYPE 12	13	14	10	9	2	∞	13	17	13	6	2	∞	11	∞	12	13	11	12	က	∞	∞	14	10	12	6	0	5	14	11	19	∞
TYPE 11	89	78	89	48	37	51	99	62	75	63	48	37	9	99	27	73	99	51	44	48	53	64	78	<i>L</i> 9	46	37	99	99	9/	81	71
TYPE 10	32	28	22	∞	10	17	14	19	21	21	13	7	10	20	21	70	22	14	12	19	21	19	34	15	7	6	21	16	24	23	19
TYPE 9	1409	1531	1204	575	99/	1490	1288	1443	1591	1300	573	169	1345	1237	1467	1472	1171	552	739	1484	1356	1419	1558	1283	538	743	1405	1286	1449	1471	1170
TYPE 8	102	9/	4	75	69	72	85	98	95	1117	71	98	72	101	109	06	105	79	118	81	66	114	117	125	98	94	106	127	68	106	100
TYPE 7	33	27	29	24	47	36	23	32	34	53	41	79	46	35	43	53	51	39	95	36	30	25	44	45	42	91	41	27	32	53	35
TYPE 6	0	-	2	0	0	0	0	0	0	0	0	-	7	-	0	0	0	0	0	0	0	1	1	-	0	0	0	-	-	7	7
TYPE 5	87	87	51	22	19	62	34	88	92	78	34	22	\$	47	52	42	73	46	28	58	82	62	72	99	25	21	46	85	52	52	26
TYPE 4	486	501	559	471	521	458	390	447	200	684	538	290	414	420	447	520	557	542	999	488	446	453	458	545	517	630	488	454	439	469	574
TYPE 3	40	42	39	23	14	36	34	32	47	45	36	17	34	26	24	33	22	25	14	34	42	35	43	30	56	20	40	55	39	34	43
TYPE 2	1617	1767	2089	1955	2181	1700	1540	1613	1778	2368	2400	2526	1621	1740	1804	2007	2338	2465	3006	1827	1670	1767	1920	2262	2311	2621	1946	1605	1555	1770	2096
TYPEI	2248	2494	3652	3250	3701	2459	1993	2314	2665	4486	4238	4439	2528	2660	3082	3293	4057	4249	5383	2756	2453	2564	2729	3823	3775	4683	2489	2295	2296	2624	3551
WEEK	WED	THI	FRI	SAT	SUN	MOM	TUE	WED	THI	FRI	SAT	SUN	NOM	TUE	WED	THI	FRI	TAN		MOM	TUE	WED	THI	FRI	SAT	Z Z	NOM	TITE	WED	THI	FRI
DATE	1-MAR	2-MAR	3-MAR	4-MAR	5-MAR	6-MAR	7-MAR	8-MAR	9-MAR	10-MAR	11-MAR	12-MAR	13-MAR	14-MAR	15-MAR	16-MAR	17-MAR	18-MAR	19-MAR	20-MAR	21-MAR	22-MAR	23-MAR	24-MAR	25-MAR	26-MAR	27-MAR	28-MAR	29-MAR	30-MAR	31-MAR

TRAFFIC VOLUME OF APRIL 1995, SOUTH SITE

TOTAL	8628	8238	6587	5737	6009	9629	7854	6830	8518	0909	6017	6533	9100	8351	7308	12254	9124	6196	6390	6732	7832	6417	N/A							
TYPE 14	11	38	22	19	30	15	37	18	35	19	19	36	09	77	14	52	33	22	30	22	24	25	N/A							
TYPE 13	0	0	1	0	0	0	2	0	0	0	0	2	0	0	0	0	0	0	0	0	2	7	N/A							
TYPE 12	7	1	9	6	13	∞	6	∞	7	7	∞	11	16	11	∞	9	9	10	6	11	6	9	N/A							
TYPE 11	57	37	64	89	71	92	63	48	39	64	20	89	<i>L</i> 9	69	42	43	49	34	<i>L</i> 9	63	75	54	N/A							
TYPE 10	10	«	24	6	17	25	17	10	7	12	15	37	23	17	4	7	22	24	17	111	19	7	N/A							
TYPE 9	564	792	1415	1292	1349	1453	1141	576	715	1323	1307	1480	1503	915	476	512	1304	1310	1472	1582	1297	587	N/A							
TYPE 8	72	85	91	83	85	107	91	61	107	96	11	95	113	123	59	124	1117	09	107	102	86	70	N/A							
TYPE 7	38	63	27	23	56	31	30	30	99	31	31	42	37	51	40	73	48	27	28	38	33	32	N/A							
TYPE 6	0	7	1	_	0	7	0	0	0	0	0	1	0	1	0	0	1	1	5	1	7	0	N/A							
TYPE 5	38	27	82	41	99	65	53	52	16	99	19	62	62	109	19	20	63	70	92	61	45	34	N/A							
TYPE 4	429	615	481	427	429	471	597	432	585	430	422	503	740	1035	200	1017	704	474	473	534	601	479	N/A							
TYPE 3	25	56	40	38	30	37	53	26	19	39	43	33	41	105	20	∞	35	29	27	41	33	18	N/A							
TYPE 2	1997	2509	1801	1555	1607	1825	2112	1993	2633	1690	1671	1682	2356	2081	2247	3556	2570	1700	1613	1671	2177	1891	N/A							
TYPEI	3380	4335	2542	2172	2293	2681	3649	3576	4294	2283	2313	2481	4065	3757	3879	6841	4172	2435	2466	2595	3417	3212	N/A							
WEEK	SAT	SUN	MON	TUE	WED	THU	FRI	SAT	SUN	MON	TUE	WED	TUE	FRI	SAT	SUN	MON	TUE	WED	TUE	FRI	SAT	SUN	MON	TUE	WED	TUE	FRI	SAT	SUN
DATE	1-APR	2-APR	3-APR	4-APR	5-APR	6-APR	7-APR	8-APR	9-APR	10-APR	11-APR	12-APR	13-APR	14-APR	15-APR	16-APR	17-APR	18-APR	19-APR	20-APR	21-APR	22-APR	23-APR	24-APR	25-APR	26-APR	27-APR	28-APR	29-APR	30-APR

TRAFFIC VOLUME OF MAY 1995, SOUTH SITE

TOTAL	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7549			10970	7348	6563	6544	6893			8429	6917	6323	6229	7622			8477	N/A	N/A	N/A
TYPE 14	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22	8957	8574	32	32	51	49	35	7974	6982	36	12	17	31	31	9615	8427	15	N/A	N/A	N/A
TYPE 13	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	27	27	7	0	1	0	0	32	21	0	0	0	7	7	49	21	0	N/A	N/A	N/A
TYPE 12	N/A																														
TYPE 11	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	63	11	7	38	51	58	59	73	10	7	37	52	28	89	<i>L</i> 9	∞	9	33	N/A	N/A	N/A
TYPE 10	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	28	72	51	11	10	16	25	32	70	48	12	21	13	19	32	61	40	4	N/A	N/A	N/A
TYPE 9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1635	20	6	889	1427	1398	1486	1504	19	19	735	1517	1412	1535	1587	17	12	437	N/A	N/A	N/A
TYPE 8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	107	1315	613	111	104	124	105	122	1368	597	112	107	85	101	116	1333	592	70	N/A	N/A	N/A
TYPE 7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	50	102	102	42	37	39	43	39	106	70	<i>L</i> 9	37	28	28	28	124	96	54	N/A	N/A	N/A
TYPE 6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	53	36	1	7	1	0	0	38	32	0	0	0	1	2	42	25	ю	N/A	N/A	N/A
TYPE 5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	87	0		19	92	121	127	06	7		19	8	88	66	100	_	0	16	N/A	N/A	N/A
TYPE 4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	496	83	49	795	515	473	449	505	68	20	579	472	437	463	524	116	51	528	N/A	N/A	N/A
TYPE 3	N/A	A/N	N/A	N/A	N/A	N/A	Z Z	N/A	N/A	A/X	55	672	612	13	31	30	40	42	591	473	25	9 4	41	25	36	661	553	20	ν Z	A/X	N/A
TYPE 2	N/A	N/A	Z/Z	Y/Z	√ Z	Į V	Y X	Z X	N/A	N/A	1942	42	32	3100	1940	1717	1639	1833	30	36	2489	1777	1647	1701	1955	32	33 1	2544	Y /Z	Y Z	N/A
TYPE 1	A/N	N/A	\ \ \ \ \	Z Z	Z Z	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	Y/N	Z/X	Y Z	A/Z	3058	2424	2506	6165	3101	2508	2513	2604	2130	2127	4315	2790	2487	2645	3134	9696	2490	4752	4/Z	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	N/A
WEEK	NOM	T I	WED	HHI.	FRI	SAT		NOM	TITE	WED	THI.	1 4135	T 4528	NI IS	NON	TOW.	WED	TH.	1 3489	T 2501	TOCS TO	NON	TIT	WFD	THU	1 4543	T 4518		NOM	TIR	WED
DATE	1-MAY	2-MAV	3-MAV	4-MAV	5-MAV	K-MAV	7.MAV	8-MAV	9-MAY	10-MAV	11-MAY	12-MAVER	13 MAVSAT	13-MA1 35	14-MAY	TAIM-CI	17-MAV	18-MAY	10-MAVERI	TANKAYCAT	20-IMIAISH	VAM-72	23-MAV	24-MAV	25-MAY	26-MAVERI	SAVIN LC	28-MAV	TATAT-07	30-MAV	31-MAY

TRAFFIC VOLUME OF JUNE 1995, SOUTH SITE

TOTAL	N/A	6621	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	10759	7691	N/A	N/A	N/A	N/A	N/A	N/A	5850	8169	7422	7479	9595						
TYPE 14	N/A	37	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	47	39	N/A	N/A	N/A	N/A	N/A	N/A	0	42	28	45	29						
TYPE 13	N/A	-	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1	1	N/A	N/A	N/A	N/A	N/A	N/A	0	2	-	0	_						
TYPE 12																							, .						10	12
TYPE 11	N/A	58	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	47	51	N/A	N/A	N/A	N/A	N/A	N/A	0	61	72	63	64						
TYPE 10	N/A	19	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7	25	N/A	N/A	N/A	N/A	N/A	N/A	0	32	23	30	21						
TYPE 9	N/A	1503	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	716	1436	N/A	N/A	N/A	N/A	N/A	N/A	1242	1396	1573	1557	1314						
TYPE 8	N/A	93	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	131	120	N/A	N/A	N/A	N/A	N/A	N/A	0	112	135	135	121						
TYPE 7	N/A	40	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	59	43	N/A	N/A	N/A	N/A	N/A	N/A	0	42	55	37	48						
TYPE 6	N/A	-	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1	0	N/A	N/A	N/A	N/A	N/A	N/A	0	_	0	0	_						
TYPE 5	N/A	68	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19	103	N/A	N/A	N/A	N/A	N/A	N/A	146	86	136	26	83						
TYPE 4	N/A	410	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	717	521	N/A	N/A	N/A	N/A	N/A	N/A	585	454	514	579	719						
TYPE 3	N/A	28	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	59	4	N/A	N/A	N/A	N/A	N/A	N/A	0	33	22	53	34						
TYPE 2	N/A	1785	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3222	2044	N/A	N/A	N/A	N/A	N/A	N/A	1023	1873	1947	1907	2637						
TYPE 1	N/A	2640	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5761	3259	N/A	N/A	N/A	N/A	N/A	N/A	2046	2759	2908	2990	4511						
WEEK	THU	FRI	SAT	SUN	MON	TUE	WED	THU	FRI	SAT	SUN	MON	TUE	WED	THU	FRI	SAT	SUN	MON	TUE	WED	THU	FRI	SAT	SUN	MON	TUE	WED	THU	FRI
DATE	1-JUN	2-JUN	3-JUN	4-JUN	S-JUN	NOI-9	7-JUN	%-JUN	NOI-6	10-JUN	11-JUN	12-JUN	13-JUN	14-JUN	15-JUN	16-JUN	17-JUN	18-JUN	19-JUN	20-JUN	21-JUN	22-JUN	23-JUN	24-JUN	25-JUN	26-JUN	27-JUN	28-JUN	29-JUN	30-JUN

TRAFFIC VOLUME OF JULY 1995, SOUTH SITE

TOTAL	9550	10156	8600	8079	8313	8094	9308	8335	8566	7705	N/A	N/A	7553	N/A	8118	10084	7483	7057	7476	7805	8765	7371	8870	7598	7430	7395	8119	9450	7918	9613	7866
TYPE 14	42	28	37	56	34	35	45	19	40	56	N/A	N/A	56	N/A	20	38	22	124	889	784	926	764	903	741	743	815	98/	849	654	069	730
TYPE 13	0	0	0	0	7	2	-	0	0	0	N/A	N/A	_	N/A	-	0		7	15	6	16	9	12	7	11	4	11	15	∞	က	7
TYPE 12	7	_	\$	∞	7	10	11	7	6	7	N/A	N/A	14	N/A	4	æ	7	9	16	10	13	6	9	16	13	15	17	21	6	10	6
TYPE 11	54	41	41	36	53	52	20	47	35	20	N/A	N/A	69	N/A	45	39	20	46	19	27	31	20	31	23	26	20	27	23	17	59	17
TYPE 10	14	7	13	6	70	17	23	∞	10	19	N/A	N/A	30	N/A	12	11	20	41	168	182	120	48	81	134	142	162	175	141	41	54	112
TYPE 9	627	712	941	574	1332	1428	1282	297	160	1422	N/A	N/A	1537	N/A	298	292	1393	1415	1544	1557	1265	634	748	1366	1378	1546	1659	1315	555	707	1320
TYPE 8	117	118	123	122	86	130	153	118	115	115	N/A	N/A	128	N/A	102	122	133	155	275	265	259	206	213	252	273	246	268	320	206	230	244
TYPE 7	31	61	49	65	45	36	53	40	62	43	N/A	N/A	37	N/A	37	49	45	93	382	426	405	352	394	395	404	382	425	480	323	399	365
TYPE 6	0	0	0	0	4	1	0	0	0	0	N/A	N/A	0	N/A	0	_	1	ဗ	36	33	27	10	6	29	41	40	46	42	12	6	27
TYPE 5	31	16	83	36	26	106	103	63	24	101	N/A	N/A	101	N/A	34	19	112	254	587	561	462	195	290	517	550	516	610	499	196	289	481
TYPE 4	647	634	549	585	699	535	602	542	558	200	N/A	N/A	509	N/A	295	784	517	717	1427	1463	1719	1576	1996	1512	1298	1288	1469	1794	1921	2326	1496
TYPE 3																															
TYPE 2	2780	2968	2387	2348	2211	2220	2533	2540	2966	2188	N/A	N/A	1974	N/A	2477	2987	2015	1706	561	565	069	029	774	569	571	557	296	747	792	1027	699
TYPE 1	5167	5547	4341	4251	3705	3486	4419	4320	5357	3198	N/A	N/A	3095	N/A	4200	5229	3137	2731	2664	2813	3407	2980	3560	2758	2779	2723	3032	3792	3276	3921	3032
WEEK	SAT	SUN	MOM	TUE	WED	THU	FRI	SAT	SUN	MOM	TUE	WED	THU	FRI	SAT	SUN	MOM	TUE	WED	THU	FRI	SAT	SUN	MOM	TUE	WED	THU	FRI	SAT	SUN	MOM
DATE	1-JUL	2-JUL	3-JUL	4-JUL	5-JUL	e-Jul	7-JUL	8-JUL	9-JUL	10-JUL	11-JUL	12-JUL	13-JUL	14-JUL	15-JUL	16-JUL	17-JUL	18-JUL	19-JUL	20-JUL	21-JUL	22-JUL	23-JUL	24-JUL	25-JUL	26-JUL	27-JUL	28-JUL	29-JUL	30-JUL	31-JUL

TRAFFIC VOLUME OF AUGUST 1995, SOUTH SITE

TOTAL	7468	7700	8411	9417	8559	10052	6924	6476	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	6558	8536	7613	8884	0289	7156	7424	6748	8342	7114	8482	9859	6111	6297	6934
TYPE 14	654	702	298	964	844	864	710	576	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	681	728	577	978	535	522	612	244	33	32	37	38	21	42	59
TYPE 13	5	14	14	13	∞	∞	14	27	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31	7	0	6	15	7	16	9	0	1	0	1	0	7	_
TYPE 12	13	13	15	14	7	6	30	35	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	23	12	7	10	9	10	24	14	11	9	4	7	10	17	10
TYPE 11	25	32	59	43	32	30	25	4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	39	38	16	23	6	25	30	41	69	48	39	61	65	57	99
TYPE 10	137	157	180	131	34	80	115	109	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26	109	38	63	102	136	117	172	59	6	15	25	15	27	33
TYPE 9	1389	1500	1660	1351	592	813	1320	1391	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1665	1311	601	756	1420	1434	1544	1497	1308	520	962	1504	1419	1558	1609
TYPE 8	229	253	291	296	200	256	390	392	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	274	236	190	234	201	221	240	141	145	73	83	115	137	118	117
TYPE 7	381	390	472	443	377	499	195	141	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	213	349	306	378	340	367	329	154	32	34	59	30	34	23	35
TYPE 6	20	30	43	32	14	15	29	87	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	23	36	16	7	33	37	48	20	_	0	0	0	0	_	
TYPE 5	538	601	267	461	217	284	352	248	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	258	399	220	224	434	471	511	245	113	48	30	118	144	143	155
TYPE 4	1329	1401	1474	1712	1677	2120	066	805	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	795	1425	1378	1714	1055	1047	1077	631	652	479	256	486	419	477	495
TYPE 3	447	489	524	624	662	286	180	87	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	303	605	528	536	526	504	545	185	47	18	14	59	39	38	42
TYPE 2	631	228	622	160	765	698	849	861	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	098	938	906	1168	729	765	771	1379	2395	2184	2527	1723	1579	1529	1788
TYPE 1	2919	2892	3170	3809	3653	4363	2756	2649	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2386	3427	3322	3806	2651	2816	2841	2574	3507	3663	4322	2449	2230	2265	2553
WEEK	TUE	WED	THU	FRI	SAT	SUN	MON	TUE	WED	THU	FRI	SAT	SUN	MON	TUE	WED	THU	FRI	SAT	SUN	MON	TUE	WED	THU	FRI	SAT	SUN	MON	TUE	WED	THU
DATE	1-AUG	2-AUG	3-AUG	4-AUG	5-AUG	6-AUG	7-AUG	8-AUG	9-AUG	10-AUG	11-AUG	12-AUG	13-AUG	14-AUG	15-AUG	16-AUG	17-AUG	18-AUG	19-AUG	20-AUG	21-AUG	22-AUG	23-AUG	24-AUG	25-AUG	26-AUG	27-AUG	28-AUG	29-AUG	30-AUG	31-AUG

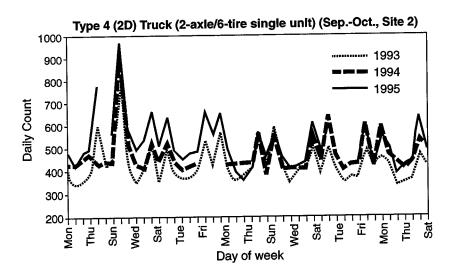
TRAFFIC VOLUME OF SEPTEMBER 1995, SOUTH SITE

TOTAL	80/6	N/A	8456	12485	7156	6517	6765	8047	8069	8028	6415	6209	6435	8269	8027	7040	8871	9899	6146	6270	6646	7987	6845	8797	9199	6265	6481	6936	9074	7427
TYPE 14	89	N/A	27	99	29	29	41	39	56	78	19	25	20	34	40	17	39	78	36	78	78	31	19	35	35	29	43	17	40	16
TYPE 13	0	N/A	0	0	0	0	_	0	n		_	1	0	1	_	0	0	7	cc	0	7	1	0	0	0	0	-	0	0	0
TYPE 12	10	N/A	7	9	2	13	18	18	7	\$	6	11	12	13	15	9	9	6	6	17	13	41	9	S	6	16	12	11	12	∞
TYPE 11	<i>L</i> 9	N/A	23	30	20	09	4	09	51	39	55	99	62	70	73	48	32	49	62	89	81	99	20	46	99	89	74	65	80	43
TYPE 10	34	N/A	4	7	16	35	31	24	13	10	20	25	32	36	14	14	6	21	19	19	18	24	6	12	6	56	25	23	28	17
TYPE 9	1301	N/A	393	729	1401	1419	1515	1417	619	790	1411	1489	1581	1635	1234	547	840	1492	1394	1465	1551	1238	564	799	1417	1447	1468	1530	1290	592
TYPE 8	131	N/A	87	161	91	103	134	117	06	91	88	102	66	111	106	86	101	115	116	112	109	114	9/	92	108	66	126	105	123	89
TYPE 7	46																												34	18
TYPE 6	0	N/A	0	_	0	0	0	_	0	0	_	0	1	0	1	0	_	1	0	2	_	0	0	0	0	-	0	-	0	-
TYPE 5	139	N/A	13	99	95	109	144	138	43	17	175	116	125	119	107	39	24	112	82	86	87	82	28	53	135	162	156	148	125	34
TYPE 4	9//	N/A	559	876	570	492	540	662	504	635	488	449	473	484	693	552	654	485	387	354	411	570	452	595	451	402	418	431	611	481
TYPE 3	36	N/A	20	79	29	37	36	39	30	24	35	32	29	38	46	27	23	33	32	38	35	36	17	14	39	29	26	37	37	17
TYPE 2	2573	N/A	2573	3736	1901	1694	1714	2094	1979	2406	1694	1592	1654	1816	2142	2083	2680	1584	1203	1234	1330	1598	1521	2000	1304	1265	1279	1344	1844	1721
TYPE 1	4527	N/A	4718	6594	2939	2495	2507	3403	3513	3924	2383	2265	2317	2590	3550	3588	4407	2655	2777	2909	2958	4181	4079	5171	3016	2696	2823	3194	4850	4411
WEEK	FRI	SAT	SUN	MOM	TUE	WED	THU	FRI	SAT	SUN	MOM	TUE	WED	THI	FRI	SAT	SUN	MOM	TUE	WED	THU	FRI	SAT	SUN	MOM	TUE	WED	THU	FRI	SAT
DATE	1-SEP	2-SEP	3-SEP	4-SEP	5-SEP	6-SEP	7-SEP	8-SEP	9-SEP	10-SEP	11-SEP	12-SEP	13-SEP	14-SEP	15-SEP	16-SEP	17-SEP	18-SEP	19-SEP	20-SEP	21-SEP	22-SEP	23-SEP	24-SEP	25-SEP	26-SEP	27-SEP	28-SEP	29-SEP	30-SEP

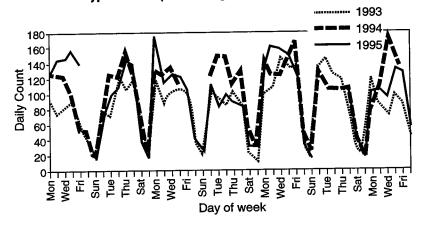
TRAFFIC VOLUME OF OCTOBER 1995, SOUTH SITE

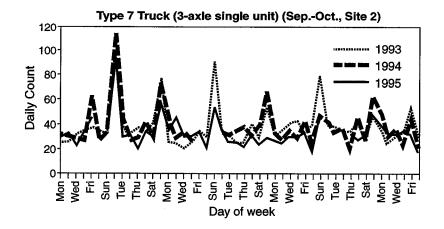
TOTAL	9440	N/A	6443	N/A	7363	9088	7373	9372	7380	6548	6479	7082	8580	7249	9392	8829	6405	6704	7235	8631	7469	2996	6903	6259	6537	7004	8424	7582	9751	9589	N/A
TYPE 14	37	N/A	30	N/A	24	59	10	26	31	18	16	38	22	10	22	22	21	33	25	33	20	37	32	25	23	35	27	16	34	59	N/A
TYPE 13	-	N/A	-	N/A	0	7	0	1	1	7	0	0	0	0	-	0	7	7	2	0	0	0	-	_	,	1	0	-	0	-	N/A
TYPE 12	10	N/A	17	N/A	11	11	5	5	7	12	∞	11	13	7	7	13	14	11	13	16	∞	7	7	15	12	20	15	11	7	12	N/A
TYPE 11	42	N/A	9/	N/A	78	72	55	40	99	99	71	69	29	49	34	64	, 4	99	74	29	48	41	55	61	63	64	72	54	34	54	N/A
TYPE 10	7	N/A	27	N/A	38	22	14	9	17	30	21	19	12	12	11	15	21	56	24	18	=======================================	∞	22	61	18	20	24	16	Π	∞	N/A
TYPE 9	791	N/A	1450	N/A	1705	1347	995	845	1489	1377	1516	1559	1331	570	167	1393	1422	1550	1607	1231	564	622	1550	1433	1499	1569	1286	277	724	1440	N/A
TYPE 8	108	N/A	117	N/A	110	123	77	88	131	112	111	110	106	70	93	109	105	132	123	116	94	111	115	113	104	135	114	94	93	111	N/A
TYPE 7	47	N/A	36	N/A	33	27	32	48	40	32	32	35	31	17	44	41	59	30	43	25	20	48	31	31	27	53	40	18	40	53	N/A
TYPE 6	0	N/A	0	N/A	2	0	0	0	7	0	0	-	-	0	0	0	0	7	1	0	0	0	-	0	7	0	_	0	0	0	N/A
TYPE 5	14	N/A	103	N/A	102	106	38	13	102	101	06	129	126	37	13	112	139	134	128	111	46	70	109	109	114	106	104	31	24	127	N/A
TYPE 4	581	N/A	389	N/A	443	603	431	552	511	378	413	439	633	469	581	440	397	436	451	578	485	685	429	418	436	469	602	470	630	463	N/A
TYPE 3	19	N/A	56	N/A	48	37	20	23	28	36	27	32	38	20	13	36	24	35	38	25	18	18	30	31	20	35	42	24	16	32	N/A
TYPE 2	2353	N/A	1321	N/A	1406	1797	1617	2180	1539	1373	1269	1403	1739	1695	2315	1347	1305	1322	1415	1758	1761	2262	1446	1320	1289	1388	1744	1747	2302	1442	N/A
TYPE 1	5430	N/A	2850	N/A	3363	4630	4508	5545	3426	3011	2905	3237	4461	4293	5491	3196	2862	2935	3291	4653	4394	5651	3075	2953	2929	3134	4353	4523	5836	3108	N/A
WEEK	SUN	MON	TUE	WED	THU	FRI	SAT	SUN	MON	TOE	WED	THU	FRI	SAT	SUN	MON	TUE	WED	THU	FRI	SAT	SUN	MON	TUE	WED	THU	FRI	SAT	SUN	MON	TUE
DATE	1-0CT	2-0CT	3-0CT	4-0CT	5-0CT	LO0-9	7-0CT	8-0CT	9-0CT	10-0CT	11-0CT	12-0CT	13-0CT	14-0CT	15-OCT	16-0CT	17-0CT	18-OCT	19-0CI	20-0CT	21-OCT	22-OCT	23-OCT	24-OCT	25-OCT	26-OCT	27-OCT	28-OCT	29-OCT	30-OCT	31-OCT

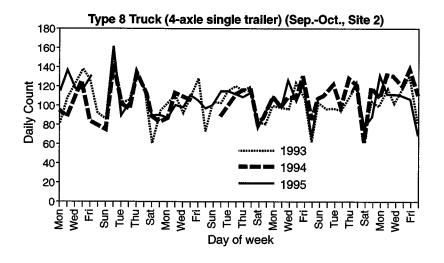
TRAFFIC VOLUME OF NOVEMBER 1995, SOUTH SITE

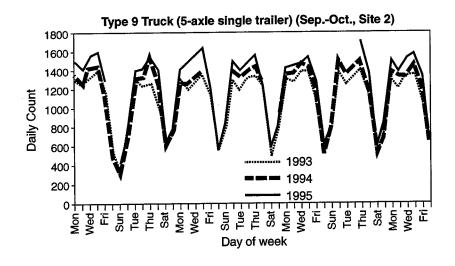

TOTAL	N/A	N/A	N/A	N/A	N/A	N/A	6317	6469	7181	8132	7207	9151	6603	6483	6558	7082	8322	7384	8465	828	8271	12287	8309	9318	12566	16685	7592	6492	6304	6734
TYPE 14	N/A	N/A	N/A	N/A	N/A	N/A	17	56	25	19	20	24	18	20	34	56	24	10	53	70	32	45	14	21	32	9	34	17	27	15
TYPE 13	N/A	N/A	N/A	N/A	N/A	N/A	_	0	0	0	0	_	0	0		0	7	0	0	0	7	0	0	0	0	0	0	0	-	0
TYPE 12																				6										
TYPE 11	N/A	N/A	N/A	N/A	N/A	N/A	45	49	69	89	48	34	29	53	09	09	74	45	30	59	29	54	24	7	27	38	64	55	57	74
TYPE 10	N/A	N/A	N/A	N/A	N/A	N/A	23	27	10	22	11	4	17	20	20	22	24	7	«	12	12	14	7	S	2	9	17	13	20	24
TYPE 9	N/A	N/A	N/A	N/A	N/A	N/A	1288	1373	1591	1195	535	749	1432	1400	1489	1645	1350	573	862	1528	1489	1275	399	256	311	632	1451	1444	1461	1555
TYPE 8	N/A	N/A	N/A	N/A	N/A	N/A	1111	96	26	103	09	91	95	96	103	106	102	79	66	108	94	134	51	74	126	178	105	104	124	105
TYPE 7	N/A	N/A	N/A	N/A	N/A	N/A	59	22	31	37	18	37	34	33	20	56	27	21	59	28	18	48	19	23	30	48	28	28	61	33
TYPE 6	N/A	N/A	N/A	N/A	N/A	N/A	0	0	7	0	0	0	1	0	0	0	0	0	0	0	1	-	0	0	0	0	1	0	0	0
TYPE 5	N/A	N/A	N/A	N/A	N/A	N/A	79	96	96	132	31	15	84	88	121	108	125	37	13	06	109	100	14	34	18	17	102	104	82	111
TYPE 4	N/A	N/A	N/A	N/A	N/A	N/A	393	419	456	604	423	290	411	396	404	404	518	488	535	459	545	863	455	578	791	1122	476	395	365	383
TYPE 3	N/A	N/A	N/A	N/A	N/A	N/A	34	56	38	26	24	22	22	31	42	40	47	30	16	25	41	39	12	21	18	23	23	31	28	45
TYPE 2	N/A	N/A	N/A	N/A	N/A	N/A	1434	1361	1453	1717	1644	2349	1378	1357	1313	1441	1697	1674	2050	1317	1640	2343	1751	2017	2892	3988	1530	1311	1294	1347
TYPE 1	N/A	N/A	N/A	N/A	N/A	N/A	2848	2942	3295	4194	4385	5229	3042	2977	2938	3195	4319	4408	4792	3223	4215	7355	5561	5980	8315	10564	3748	2975	2809	3028
WEEK	WED	THI	FRI	SAT	SUN	MOM	TUE	WED	THI	FRI	SAT	SUN	MOM	TUE	WED	THO	FRI	SAT	Z	MOM	TUE	WED	THI	FRI	SAT	SUN	MOM	TUE	WED	THU
DATE	1-NOV	2-NOV	3-NOV	4-NOV	S-NOV	NON-9	7-NOV	%-NOV	MON-6	10-NOV	11-NOV	12-NOV	13-NOV	14-NOV	15-NOV	16-NOV	17-NOV	18-NOV	19-NOV	20-NOV	21-NOV	22-NOV	23-NOV	24-NOV	25-NOV	VON-95	27-NOV	28-NOV	YON-92	30-NOV

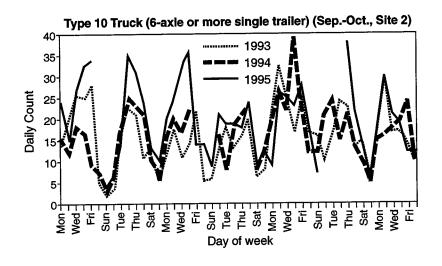
TRAFFIC VOLUME OF DECEMBER 1995, SOUTH SITE

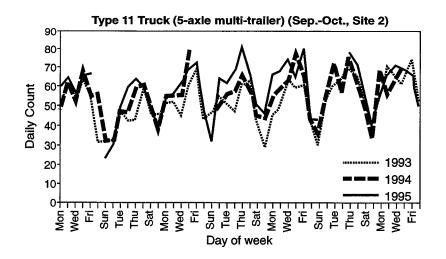

TOTAL	7774	6635	8248	6746	6411	6483	6803	7300	6364	7228	6331	6124	6859	N/A	N/A	N/A	N/A	N/A	7036	7524	8458	9300	10037	8080	9241	12039	9223	8816	9188	8958	Z
TYPE 14	16	22	22	17	23	18	24	27	12	13	18	18	14	N/A	N/A	N/A	N/A	N/A	21	22	33	18	56	6	17	38	24	27	38	14	N/A
TYPE 13	0	_	0	0	_	0	-	_	0	-	0	0	0	N/A	N/A	N/A	N/A	N/A	7	_	0	0	0	0	0	_		ю	0	0	N/A
TYPE 12										2																					
TYPE 11	09	58	38	53	62	70	<i>L</i> 9	09	53	34	47	28	64	N/A	N/A	N/A	N/A	N/A	92	57	63	64	36	-	-	35	99	73	54	54	N/A
TYPE 10	14	12	5	22	25	19	14	31	12	∞	31	25	56	N/A	N/A	N/A	N/A	N/A	15	34	28	16	7	0	7	15	15	18	15	4	N/A
TYPE 9	1260	256	816	1500	1437	1539	1561	1203	207	752	1437	1362	1471	N/A	N/A	N/A	N/A	N/A	1267	1421	1481	1027	451	187	179	829	1169	1285	1055	509	N/A
TYPE 8	86	9/	68	111	114	120	133	108	71	92	87	106	103	N/A	N/A	N/A	N/A	N/A	68	100	06	108	75	47	89	125	131	133	134	87	N/A
TYPE 7	31	17	23	22	25	20	34	50	7	17	18	24	25	N/A	N/A	N/A	N/A	N/A	30	21	24	30	13	14	14	43	23	37	32	21	N/A
TYPE 6	0	0	0	0	0	0	0	1	0	0	1	_	-	N/A	N/A	N/A	N/A	N/A	0	-	0		0	0	0	0		0	0	0	N/A
TYPE 5	119	45	20	127	129	121	66	99	24	13	94	11	69	N/A	N/A	N/A	N/A	N/A	42	77	81	89	19	∞	∞	20	4	73	114	21	N/A
TYPE 4	515	425	545	403	419	461	391	465	386	400	402	380	424	N/A	N/A	N/A	N/A	N/A	439	435	481	544	265	435	559	753	561	529	548	216	N/A
TYPE 3	38	27	23	34	40	34	47	33	20	14	56	35	31	N/A	N/A	N/A	N/A	N/A	20	29	36	23	15	∞	11	25	17	22	19	14	N/A
TYPE 2	1596	1552	1961	1358	1308	1268	1354	1547	1454	1807	1261	1207	1340	N/A	N/A	N/A	N/A	N/A	1438	1532	1717	1894	2101	1769	1846	2459	1832	1794	1880	1955	N/A
TYPE 1	4018	3832	4695	3085	2813	2795	3071	3714	3808	4102	2905	2818	3007	N/A	N/A	N/A	N/A	N/A	3563	3786	4409	5497	6229	2600	9839	7661	5341	4811	5289	2692	N/A
WEEK	FRI	SAT	SUN	MON	TUE	WED	THU	FRI	SAT	SUN	MON	TOE	WED	THU	SAT	FRI	SUN	MON	TUE	WED	THU	FRI	SAT	SUN	MON	TUE	WED	THU	FRI	SAT	SUN
DATE	1-DEC	2-DEC	3-DEC	4-DEC	5-DEC	6-DEC	7-DEC	8-DEC	9-DEC	10-DEC	11-DEC	12-DEC	13-DEC	14-DEC	15-DEC	16-DEC	17-DEC	18-DEC	19-DEC	20-DEC	21-DEC	22-DEC	23-DEC	24-DEC	25-DEC	26-DEC	27-DEC	28-DEC	29-DEC	30-DEC	31-DEC

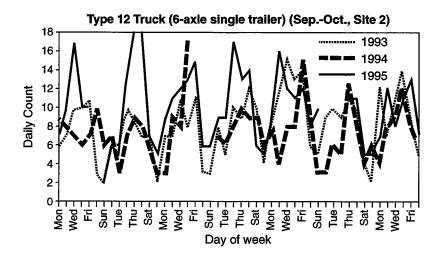

APPENDIX C:


TRAFFIC GROWTH RATE ANALYSIS









APPENDIX D:

INSTRUCTIONS FOR USING CAR AND ESAL PROGRAM

This appendix is included to provide guidance for using the computer programs developed for this report. There are two PC-format programs incorporated into this study. The first one is used for sorting vehicles by TxDOT classification and for calculating the axle-load frequency distribution and the weighted average ESALs for each type of TxDOT-classified vehicles. The second program is for forecasting the ESALs on a user-defined pavement type for a user-defined period.

The executive file of the first program is named "CAR" and the executive file of the second program is called "ESAL." The source files and their respective computer-occupied spaces of the two programs are listed in Table D-1:

	CAR	ESAL	
Name of Executive file:	car.exe	esal.exe	
# of bytes:	143,484	56,768	
Name of source file:	tc2.cpp	esal.cpp	
# of bytes:	34,686	3,016	

Table D-1 Name and space of the programs

It should be noted that users need only the executive file, such as car.exe, to execute the program without using the resource file, such as, tc2.cpp; the executive files can be executed without any prerequested background. For example, the program can be executed by entering "car" or "esal" under the DOS command or by clicking the executive files in the File Manager of Windows' background. The executive commands are not case sensitive.

It is suggested by the author that users set up a new directory for the use of the programs. Users should first copy both car.exe and esal.exe into the created directory, and then copy the data files that are to be analyzed.

D.1 CAR PROGRAM -FUNCTION 1: SORTING VEHICLES

When executing the CAR program, users will be prompted to input a couple of parameters corresponding to the questions popped up consecutively on the screen (see Figure D-1). The first three parameters are about the data files that users want to analyze. Users need to specify the year, month, and site of the data files. If users want to analyze a whole year's data at one time without inputting the parameters for each month, users should input "*" for the month parameter. Users also need to name the output file and choose between "count" and "weight" functions. For example, if a user wants to sort vehicles, then the user needs to choose the first option: 1. After the user keys in "1" and hits the enter key, the program will start to count and sort the vehicles, and the user will see the hundred numbers showing up on the screen. Those cumulative numbers tell the user the number of vehicles sorted by the program. After the program finishes one day's data, the number will start from 100 again for the next day's data. For example, if there were more than 6400 but fewer than 6500 vehicles in the first day's data, after the number 6400, the number 100 will be shown on the screen again, which means the program has already started to sort the second day's data.

Once the program has finished all the data files in the user-defined month, the lower left corner of the screen will change from "Running" to "Finished." It takes about 10 minutes to sort one month's data. A sample screen for the sorting vehicles function (option 1) of the CAR program is shown in Figure D-1 and the output file c1 of March 23 of 1994's data is shown in Table D-2. The output file can be opened from DOS, Microsoft EXCEL, and from Word.

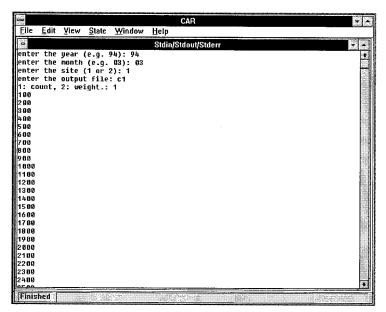


Figure D-1 Screen for the vehicle-sorting function (option 1) of CAR program

Table D-2 Output file format for vehicle-sorting function of CAR program

Traffic type	count on lane 1	23-Mar lane 2
1	1967	650
2	1202	357
3	26	5
4	272	176
5	59	12
6	1	0
7	34	5
8	74	12
9	1289	159
10	20	0
11	54	7
12	10	0
13	1	0
14	8	3
Total	5017	1386

D.2 CAR PROGRAM — FUNCTION 2: AXLE WEIGHT FREQUENCY DISTRIBUTION AND WEIGHTED AVERAGE ESALS FOR EACH VEHICLE TYPE

When the user chooses the weight function (option 2) in the fifth question of the CAR program, the program prompts for more user input (see Figure D-2). The user needs to specify pavement type with its terminal serviceability and structural number (flexible pavement) or slab thickness (rigid pavement). The structural numbers range from 1 to 9 for flexible pavement, and from 6 to 14 for rigid pavement.

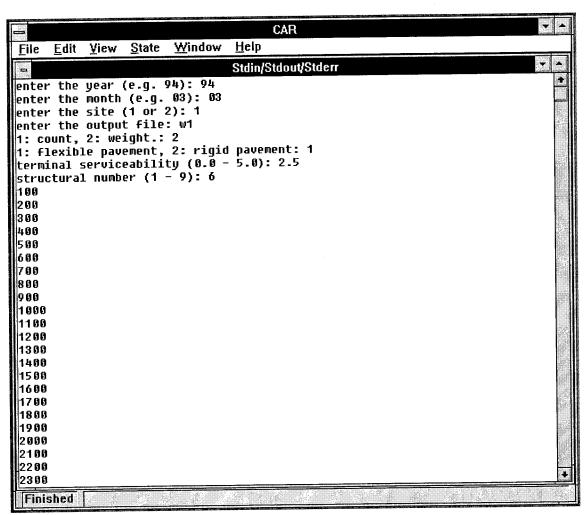


Figure D-2 Screen for axle-load distribution function (option 2) of CAR program

The output file w1 for the weight distribution function of March 23 of 1995's data is shown in Table D-3.

Table D-3 Output file w1 for March 23, 1995, by axle-load distribution function of CAR program

TYPE 4:								
	S41		S42		S43		S44	
weight	# of	weight						
range	axles	distri.	axles	distri.	axles	distri.	axles	distri.
2	214	53.9	4	20	13	68.42	0	0
4	55	13.85	2	10	1	5.26	10	32.26
6	43	10.83	4	20	2	10.53	17	54.84
8	28	7.05	4	20	1	5.26	1	3.23
10	24	6.05	1	5	1	5.26	3	9.68
12	7	1.76	0	0	1	5.26	0	0
14	7	1.76	1	5	0	0	0	0
16	5	1.26	0	0	0	0	0	0
18	7	1.76	1	5	0	0	0	0
20	3	0.76	1	5	0	0	0	0
22	2	0.5	2	10	0	0	0	0
24	2	0.5	0	0	0	0	0	0
total	397		20		19		31	

	T4	
weight	# of	weight
range	axles	distri.
4	23	74.19
8	8	25.81
12	0	0
16	0	0
20	0	0
24	0	0
28	0	0
32	0	0
36	0	0
40	0	0
44	0	0
48	0	0
total	31	

weight range 13 15 17 19 total	E41 # of axles 2 0 0	weight distri. 100 0	E42 # of axles 0 1 0 0	weight distri. 0 100 0	E43 # of axles 0 0 0 0	weight distri. 0 0 0
TYPE 5: weight range 4	T5 # of axles 0	weight distri.				

total

weight

range

total

E5

of

axles

18.31

15.49

19.72 21.13

4.235.63

5.63 2.82

4.23

2.82

weight

distri.

n	73.7	n :	_	_
4	Y	М	М.	u.

	S6	
weight	# of	weight
range	axles	distri.
2	0	0
4	0	0
6	0	0
8	0	0
10	0	0
12	0	0
14	0	0
16	1	100
18	0	0
20	0	0
22	0	0
24	0	0
total	1	

total

	E61		E62	
weight	# of	weight	# of	weight
range	axles	distri.	axles	distri.
13	0	0	0	0
15	0	0	0	0
17	1	1	0	0
19	0	0	0	0
total	1		0	

	R6	
weight	# of	weight
range	axles	distri.
4	0	0
8	0	0
12	0	0
16	0	0
20	0	0
24	0	0
28	0	0
32	0	0
36	0	0
40	0	0
44	0	0
48	0	0
52	0	0
56	0	0
60	0	0
64	0	0
68	0	0
total	0	

TYPE 7:

TYPE /:				
	S71		S72	
weight	# of	weight	# of	weight
range	axles	distri.	axles	distri.
2	12	30.77	18	46.15
4	3	7.69	2	5.13
6	1	2.56	0	0
8	1	2.56	7	17.95
10	4	10.26	2	5.13
12	5	12.82	2	5.13
14	5	12.82	1	2.56
16	2	5.13	7	17.95
18	6	15.38	0	0
20	0	0	0	0
22	0	0	0	0
24	0	0	0	0
total	39		39	

	E7			
weight	# of	weight		
range	axles	distri.		
13	0	0		
15	1	0.33		
17	0	0		
19	2	0.67		
total	3			
TYPE 8:				
	S81		S82	
weight	# of	weight	# of	weight
range	axles	distri.	axles	distri.
2	0	0	26	54.17
4	2	5.26	1	2.08
6	7	18.42	3	6.25
8	3	7.89	5	10.42
10	7	18.42	6	12.5
12	9	23.68	2	4.17
14	4	10.53	1	2.08
16	2	5.26	3	6.25
18	1	2.63	0	0
20	3	7.89	0	0
22	0	0	1	2.08
24	0	0	0	0
total	38		48	
	T81		T82	
weight	# of	weight	# of	weight
range	axles	distri.	axles	distri.
4	3	7.5	13	28.26
8	14	35	6	13.04
12	9	22.5	8	17.39
16	9	22.5	6	13.04
20	3	7.5	6	13.04
24	1	2.5	1	2.17
28	1	2.5	0	0
32	0	0	1	2.17
36	0	0	2	4.35
40	0	0	3	6.52
44	0	0	0	0
48	0	0	0	0
total	40		46	

	E81	• • •	E82	. 14		
weight	# of	weight	# of	weight distri.		
range	axles	distri.	axles	uisui. 1		
13	0	0	2	0		
15	0	0		0		
17	0	0	0	0		
19	0	0	2	U		
total	0		2			
TYPE 9:			DG01		DCOO	
	S9		DS91	. 14	DS92	
weight	# of	weight	# of	weight	# of	weight
range	axles	distri.	axles	distri.	axles	distri.
2	0	0	0	0	1	0.85
4	0	0	3	2.54	4	3.39
6	3	42.86	7	5.93	7	5.93
8	3	42.86	6	5.08	5	4.24
10	1	14.29	10	8.47	13	11.02
12	0	0	6	5.08	9	7.63
14	0	0	17	14.41	8	6.78
16	0	0	33	27.97	36	30.51
18	0	0	27	22.88	28	23.73
20	0	0	6	5.08	6	5.08
22	0	0	1	0.85	1	0.85
24	0	0	0	0	0	0
total	7		118		118	
	T91		T92		DT9	
weight	# of	weight	# of	weight	# of	weight
range	axles	distri.	axles	distri.	axles	distri.
4	3	0.23	16	1.21	1	0.85
8	19	1.44	225	16.96	3	2.54
12	242	18.33	153	11.53	3	2.54
16	132	10	104	7.84	10	8.47
20	126	9.55	106	7.99	7	5.93
24	120	9.09	116	8.74	15	12.71
28	153	11.59	216	16.28	36	30.51
32	333	25.23	324	24.42	38	32.2
36	151	11.44	55	4.14	5	4.24
40	34	2.58	11	0.83	0	0
44	7	0.53	1	0.08	0	0
48	0	0	0	0	0	0
total	1320		1327		118	

weight range 13 15 17 19 total	E91 # of axles 0 0 0 0	weight distri. 0 0 0	E92 # of axles 61 4 0 0 65	weight distri. 0.94 0.06 0	E93 # of axles 3 0 0 3	weight distri. 1 0 0
	R9					
weight	# of	weight				
range	axles	distri.				
4	0	0				
8	3	42.86				
12	2	28.57				
16	2	28.57				
20	0	0				
24	0	0				
28	0	0				
32	0	0				
36	0	0				
40	0	0				
44	0	0				
48	0	0				
52	0	0				
56	0	0				
60	0	0				
64	0	0				
68	0	0				
total	7					
TYPE 10						
TYPE 10	: T10					
iaht	# of	aialh4				
weight	# 01 axles	weight distri.				
range 4	0	0				
8	0	0				
12	0	0				
16	2	10				
20	6	30				
24	4	20				
28	5	25				
32	2	10				
36	0	0				
40	1	5				
44	0	0				
48	0	0				
total	20	V				
ioui.	20					

weight range 13 15 17 19 total	E10 # of axles 1 0 1 0 2	weight distri. 0.5 0 0.5						
weight range 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 total	R10 # of axles 0 0 7 3 0 3 1 1 0 0 0 0 0 0 20	weight distri. 0 0 35 15 0 15 5 0 15 0 0 0 0 0						
TYPE 11 weight range 2 4 6 8 10 12 14 16 18 20 22 24 total	: S111 # of axles 1 2 0 1 1 8 7 16 16 6 3 0 61	weight distri. 1.64 3.28 0 1.64 1.64 13.11 11.48 26.23 26.23 9.84 4.92 0	S112 # of axles 4 0 2 1 4 11 9 13 12 5 0 0 61	weight distri. 6.56 0 3.28 1.64 6.56 18.03 14.75 21.31 19.67 8.2 0 0	S113 # of axles 4 0 6 7 10 15 8 7 3 1 0 0 6	weight distri. 6.56 0 9.84 11.48 16.39 24.59 13.11 11.48 4.92 1.64 0	S114 # of axles 7 1 4 12 5 12 6 8 4 2 0 0 61	weight distri. 11.48 1.64 6.56 19.67 8.2 19.67 9.84 13.11 6.56 3.28 0

	E11					
weight	# of	weight				
range	axles	distri.				
13	2	0.5				
15	1	0.25				
17	1	0.25				
19	0	0				
total	4					
TYPE 12	:					
	S1211		S1212		S1213	
weight	# of	weight	# of	weight	# of	weight
range	axles	distri.	axles	distri.	axles	distri.
2	0	0	0	0	0	0
4	0	0	0	0	0	0
6	0	0	0	0	0	0
8	0	0	0	0	0	0
10	0	0	0	0	0	0
12	0	0	0	0	0	0
14	0	0	0	0	0	0
16	0	0	0	0	0	0
18	0	0	0	0	0	0
20	0	0	0	0	0	0
22	0	0	0	0	0	0
24	0	0	0	0	0	0
total	0		0		0	
	S1221		S1222		S1223	
weight	# of	weight	# of	weight	# of	weight
range	axles	distri.	axles	distri.	axles	distri.
2	0	0	0	0	0	0
4	0	0	0	0	0	0
6	1	10	3	30	3	30
8	0	0	0	0	1	10
10	0	0	3	30	3	30
12	2	20	1	10	2	20
14	5	50	2	20	0	0
16	0	0	0	0	0	0
18	2	20	0	0	1	10
20	0	0	1	10	0	0
22	0	0	0	0	0	0
24	0	0	0	0	0	0
total	10		10		10	

	T121		T122	
weight	# of	weight	# of	weight
range	axles	distri.	axles	distri.
4	0	0	0	0
8	0	0	0	0
12	0	0	1	10
16	0	0	4	40
20	0	0	5	50
24	0	0	0	0
28	0	0	0	0
32	0	0	0	0
36	0	0	0	0
40	0	0	0	0
44	0	0	0	0
48	0	0	0	0
total	0		10	
	E121		E122	
weight	# of	weight	# of	weight
range	axles	distri.	axles	distri.
13	0	0	0	0
15	0	0	0	0
17	0	0	0	0
19	0	0	0	0
total	0		0	
TYPE 13	:		0122	
	S131		S132 # of	weight
weight	# of	weight distri.	# 01 axles	distri.
range	axles		axies 1	100
2	1	100 0	0	0
4	0	0	0	0
6	0 .	0	0	0
8		0	0	0
10	0	0	0	0
12	0	0	0	0
14	0 0	0	0	0
16		0	0	0
18	0	0	0	0
20	0	0	0	0
22	0	0	0	0
24 total	1	U	1	•
total	1		1	

	T131		T132	
weight	# of	weight	# of	weight
range	axles	distri.	axles	distri.
4	0	0	0	0
8	0	0	0	0
12	0	0	1	100
16	0	0	0	0
20	1	100	0	0
24	0	0	0	0
28	0	0	0	0
32	0	0	0	0
36	0	0	0	0
40	0	0	0	0
44	0	0	0	0
48	0	0	0	0
total	1		1	

	E13			
weight	# of	weight		
range	axles	distri.		
13	0	0		
15	0	0		
17	0	0		
19	0	0		
total	0			
Type 4				
2D:0	0.08257			
2D-1:	0.403			
2D-2:	0.015			
Type 5				
3A:0	0.33583			
Type 6				
4A:0	0			
Rig:	1.4401			
Type 7				
2S1:	0.3972			
Type 8				
2S2:	0.317			
3S1:	0.3592			
Type 9				
2S3:	0.0326			
3S3:	0.9253			
3S2:	1.6437			
Type 10				
3S3:	0.4997			
Type 11				
2S1-2	: 1.82			
*				
Type 12				
2S2-2	: 0.00			
3S1-2	: 0.91			

Type 13 3S2-2

: 0.12

D.3 ESAL PROGRAM

The ESAL program is used for forecasting the cumulative ESALs at the end of the selected forecasting period. When executing the ESAL program, the user must input the forecasting period, either from simple or compound growth rate (see Section 5.3), the growth rate, the AADT, as well as the weighted average ESALs for each type of vehicle (see Figure D-3).

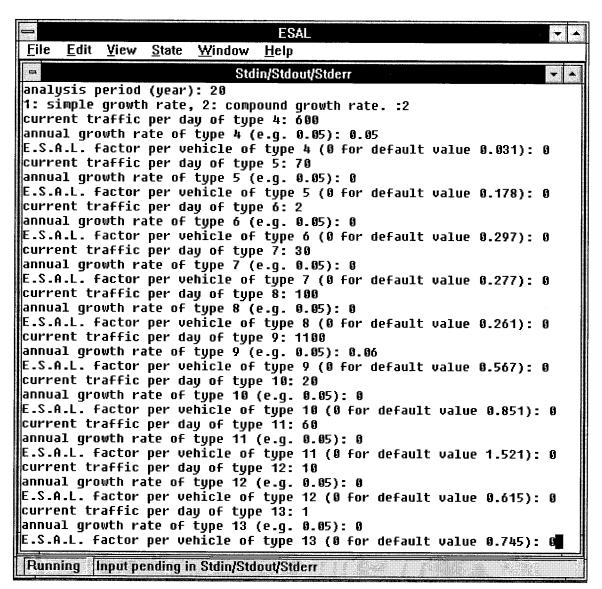


Figure D-3 Screen for ESAL program (part 1)

After the user inputs the AADT, growth rate, and weighted average ESALs for each type of vehicle, the program will list all the data again for the user to check. For example, if the user wants to modify the growth rate for the type 9 vehicle, the user needs to retype the

three parameters for the type 9 vehicle (see Figure D-4). After the user has modified the selected type of vehicle, the program will still provide opportunities for modification until the user is satisfied with the inputs. When the user inputs 0, the program will start to calculate; it takes only about 2 seconds for the program to calculate the total cumulative ESALs. A sample output file of the ESAL program is shown in Table D-4.

			Stdin/Stdout/Stderr	<u> </u>
type	traffic	rate	factor	
	600	0.05	9.0319	
4	70	0.05	0.1780	
5	7 U	0.00	0.2970	
6	_	0.00 8.00	0.2770	
7	30	0.00 0.00	0.2610	
8	100		0.5670	
9	1100	0.0ó	0.8510	
10	20	0.00 0.00	1.5210	
11	60		0.6150	
12	10	0.00 0.00	0.7450	
13	1	0.00	9.742U	
	bundle tupo	to be med	ified (o for exit): 9	
ancer i	Lruck cype		tune 0: 4400	
current	t traffic p	er day of	type 9: 1100	
annual	growth rat	e of type	9: 0.05	
				1
E.S.A.I	. factor p	er vehicl	e of type 9: 0.567	
E.S.A.I	factor p	er vehicl	e of type 9: 0.567	:
E.S.A.I	factor p	er vehicl	e of type 9: 0.567	
E.S.A.I truck	. factor p	er vehicl growth	e of type 9: 0.567 E.S.A.L.	
E.S.A.I truck type	factor p	er vehicl growth	e of type 9: 0.567	
E.S.A.I truck type	current	er vehicl growth rate	E.S.A.L. factor	
E.S.A.I truck type 4	current traffic	er vehicl growth rate 0.05	E.S.A.L. factor 0.0310	
E.S.A.I truck type 4	current traffic 600 70	growth rate 0.05 0.00	E.S.A.L. Factor 0.0310 0.1780 0.2970	
E.S.A.I truck type 4 5 6	current traffic 600 70 2	growth rate 0.05 0.00	E.S.A.L. Factor 0.0310 0.1780 0.2970	
truck type 4 5 6	current traffic 600 70 2 30	er vehicl growth rate 0.05 0.00 0.00	E.S.A.L. factor 0.0310 0.1780 0.2970 0.2770	
E.S.A.I truck type 4 5 6 7 8	current traffic 600 70 2 30	er vehicl growth rate 0.05 0.00 0.00 0.00	E.S.A.L. factor 0.0310 0.1780 0.2970 0.2770	
E.S.A.I truck type 4 5 6 7 8 9	current traffic 600 70 2 30 100	growth rate 0.05 0.00 0.00 0.00	E.S.A.L. factor 6.0310 0.1780 0.2970 0.2770	
E.S.A.I truck type 4 5 6 7 8 9	current traffic 	growth rate 0.05 0.00 0.00 0.00 0.00	E.S.A.L. factor 0.0310 0.1780 0.2970 0.2770 0.2610 0.5670 0.8510	
truck type 4 5 6 7 8 9 10	current traffic 	er vehicl growth rate 0.05 0.00 0.00 0.00 0.00 0.00	E.S.A.L. factor 0.0310 0.1780 0.2970 0.2770 0.2610 0.5670 0.8510	
truck type 4 5 6 7 8 9 10 11	current traffic 	er vehicl growth rate 0.05 0.00 0.00 0.00 0.00 0.00	E.S.A.L. factor 	
truck type 4 5 6 7 8 9 10	current traffic 	er vehicl growth rate 0.05 0.00 0.00 0.00 0.00 0.00	E.S.A.L. factor 0.0310 0.1780 0.2970 0.2770 0.2610 0.5670 0.8510	
truck type 4 5 6 7 8 9 10 11	current traffic 	er vehicl growth rate 0.05 0.00 0.00 0.00 0.00 0.00	E.S.A.L. factor 	
truck type 4 5 6 7 8 9 10 11 12 13	current traffic 600 70 2 30 100 1100 20 60	growth rate 0.05 0.00 0.00 0.00 0.05 0.00 0.05 0.00 0.00	E.S.A.L. factor 6.0310 0.1780 0.2970 0.2770 0.2610 0.5670 0.8510 1.5210 0.7450	
truck type 4 5 6 7 8 9 10 11 12 13	current traffic 600 70 2 30 100 1100 20 60	growth rate 0.05 0.00 0.00 0.00 0.05 0.00 0.05 0.00 0.00	E.S.A.L. factor 	

Figure D-4 Screen for ESAL program (part 2)

Table D-4 Output file format for ESAL program

truck	current	growth	design	E.S.A.L.	design
types	traffic	rate	traffic	factor	E.S.A.L.
	(AADT)		(cumulation)	(/veh.)	
4	600	5%	7241235	0.031	224478
5	70	0%	511000	0.178	90957
6	2	0%	14600	0.297	4336
7	30	0%	219000	0.277	60663
8	100	0%	730000	0.261	190530
9	1100	5%	14769360	0.567	8374227
10	20	0%	146000	0.851	124245
11	60	0%	438000	1.521	666197
12	10	0%	73000	0.615	44894
13	1	0%	7300	0.745	5438
total	1993		24149495		9785965

CENTER FOR TRANSPORTATION RESEARCH

The University of Texas at Austin 3208 Red River, Suite 200 Austin, TX 78705

> (512) 232-3100 FAX: (512) 232-3153

Email: transres@www.utexas.edu Internet: http://www.utexas.edu/depts/ctr

